
§1 BOXCOUNT INTRODUCTION 1

December 10, 2011 at 11:38

1. Introduction.

Boxcount

A program for calculating box-counting estimates to the fractal dimension of curves in the plane.

(Version 1.6 of November 26, 2011)

Written by Fredrik Jonsson

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

This CWEB† computer program calculates box-counting estimates of the fractal dimension of curves in the
two-dimensional plane.
In the box-counting estimate to the fractal dimension of a graph in the domain {x, y : xmin ≤ x ≤

xmax, ymin ≤ y ≤ ymax}, a grid of squares, each of horizontal dimension (xmax − xmin)/2
m and vertical

dimension (ymax − ymin)/2
m, is superimposed onto the graph for integer numbers m. By counting the total

number of such squares Nm needed to cover the entire graph at a given m (hence the term “box counting”),
an estimate Dm to the fractal dimension D (or Hausdorff dimension) is obtained as Dm = ln(Nm)/ ln(2m).
This procedure may be repeated may times, with Dm → D as m → ∞ for real fractal sets. However, for

† For information on the CWEB programming language by Donald E. Knuth, as well as samples of CWEB

programs, see http://www-cs-faculty.stanford.edu/~knuth/cweb.html. For general information on
literate programming, see http://www.literateprogramming.com.

2 INTRODUCTION BOXCOUNT §1

finite-depth fractals (as generated by a computer), some limit on m is necessary in order to prevent trivial
convergence towards Dm → 1.
In addition to mere numerical calculation, the program also generates graphs of the box distributions, in

form of METAPOST code which can be post-processed by other programs.

Copyright c© Fredrik Jonsson, 2006–2011. All rights reserved.

§2 BOXCOUNT THE CWEB PROGRAMMING LANGUAGE 3

2. The CWEB programming language. For the reader who might not be familiar with the concept
of the CWEB programming language, the following citations hopefully will be useful. For further information,
as well as freeware compilers for compiling CWEB source code, see http://www.literateprogramming.com.

I believe that the time is ripe for significantly better documentation of programs, and that we can

best achieve this by considering programs to be works of literature. Hence, my title: ‘Literate

Programming.’

Let us change our traditional attitude to the construction of programs: Instead of imagining

that our main task is to instruct a computer what to do, let us concentrate rather on explaining

to human beings what we want a computer to do.

The practitioner of literate programming can be regarded as an essayist, whose main concern

is with exposition and excellence of style. Such an author, with thesaurus in hand, chooses

the names of variables carefully and explains what each variable means. He or she strives for a

program that is comprehensible because its concepts have been introduced in an order that is

best for human understanding, using a mixture of formal and informal methods that reinforce

each other.

–Donald Knuth, The CWEB System of Structured Documentation (Addison-Wesley, Massachusetts, 1994)

The philosophy behind CWEB is that an experienced system programmer, who wants to provide

the best possible documentation of his or her software products, needs two things simultaneously:

a language like TEX for formatting, and a language like C for programming. Neither type

of language can provide the best documentation by itself; but when both are appropriately

combined, we obtain a system that is much more useful than either language separately.

The structure of a software program may be thought of as a ‘WEB’ that is made up of many

interconnected pieces. To document such a program we want to explain each individual part of

the web and how it relates to its neighbors. The typographic tools provided by TEX give us an

opportunity to explain the local structure of each part by making that structure visible, and the

programming tools provided by languages like C make it possible for us to specify the algorithms

formally and unambiguously. By combining the two, we can develop a style of programming

that maximizes our ability to perceive the structure of a complex piece of software, and at the

same time the documented programs can be mechanically translated into a working software

system that matches the documentation.

Besides providing a documentation tool, CWEB enhances the C language by providing the

ability to permute pieces of the program text, so that a large system can be understood entirely

in terms of small sections and their local interrelationships. The CTANGLE program is so

named because it takes a given web and moves the sections from their web structure into the

order required by C; the advantage of programming in CWEB is that the algorithms can be

expressed in “untangled” form, with each section explained separately. The CWEAVE program

is so named because it takes a given web and intertwines the TEX and C portions contained in

each section, then it knits the whole fabric into a structured document.

–Donald Knuth, “Literate Programming”, in Literate Programming (CSLI Lecture Notes, Stanford, 1992)

4 REVISION HISTORY OF THE PROGRAM BOXCOUNT §3

3. Revision history of the program.

2006-05-08 [v.1.0] <fj@phys.soton.ac.uk>
First properly working version of the BOXCOUNT program, written in CWEB and (ANSI-
conformant) C. I have so far compiled the code with GCC using the --pedantic option
and verified that the box-covering routine get num covering boxes with boxmaps () and
its more low-level core engine box intersection () both work properly, by direct inspection
of the compiled METAPOST graphs generated by this routine. That the numbers of
counted boxes are correct has also been verified and the only remaining blocks to
be added are related to the extraction of the fractal dimension as such. This first
version of the BOXCOUNT program consists of 52671 bytes (1292 lines) of CWEB code,
under CYGWIN generating an executable file of 22561 bytes and 33 pages of program
documentation in 10 pt typeface.

2006-05-09 [v.1.1] <fj@phys.soton.ac.uk>
Changed the block for the estimate of the fractal dimension, so that the estimate
now is obtained as the average of ln(Nboxes)/ ln(2

n) for a set of n such that Nmin ≤
n ≤ Nmax, rather than performing a linear curve fit to the data. In order to sample
statistical information on the estimate, such as standard deviation, average deviation
and skewness, I incorporated a slightly modified version of the routine moment () from
Numerical Recipes in C. Also added a preliminary section describing the test application
of BOXCOUNT to the Koch fractal, being a simple test case which is easily implemented
by means of a recursive generation of the data set for the input trajectory. As of
today, the BOXCOUNT program consists of 59788 bytes (1444 lines) of CWEB code,
under CYGWIN generating an executable file of 24253 bytes and 38 pages of program
documentation in 10 pt typeface.

2006-05-14 [v.1.2] <fj@phys.soton.ac.uk>
Added a section on the command-line options for supplying the BOXCOUNT program
with input parameters. Polished the section on the example of estimation of the box-
counting dimension of the Koch fractal, and in particular changed the example from the
Koch curve to the Koch snowflake instead, just for the sake of visual beauty. As of today,
the BOXCOUNT program consists of 72560 bytes (1699 lines) of CWEB code, under OSX
generating an executable file of 24996 bytes and 41 pages of program documentation in
10 pt typeface.

2006-05-17 [v.1.3] <fj@phys.soton.ac.uk>
Added documentation on the get num covering boxes with boxmaps () routine and gen-
erally cleaned up in the documentation of the program. As of today, the BOXCOUNT

program consists of 82251 bytes (1844 lines) of CWEB code, under CYGWIN generat-
ing an executable file of 29152 bytes and 40 pages of program documentation in 10 pt
typeface.

2006-06-17 [v.1.4] <fj@phys.soton.ac.uk>
Added the --graphsize option, in order to override the default graph size. Also changed
the inclusion of the input trajectory in the boxmaps, so that the BOXCOUNT program
rather than using a METAPOST call of the form gdraw "input.dat" now chops the
trajectory into proper pieces and includes the entire trajectory explicitly in the generated
graph. This way the output METAPOST code naturally increases considerably in size,
but is now at least self-sustaining even is separated from the original data file containing
the input trajectory.

2006-10-25 [v.1.5] <fj@phys.soton.ac.uk>
Added two pages of text on the boxcounting estimate of the fractal dimension of the
Koch snowflake fractal in the example section.

§3 BOXCOUNT REVISION HISTORY OF THE PROGRAM 5

2011-11-26 [v.1.6] <http://jonsson.eu>
Updated Makefile:s for the generation of figures. Also corrected a rather stupid way
of removing preceeding paths of file names.

6 COMPILING THE SOURCE CODE BOXCOUNT §4

4. Compiling the source code. The program is written in CWEB, generating ANSI C (ISO C90)
conforming source code and documentation as plain TEX-source, and is to be compiled using the sequences
as outlined in the Makefile listed below.

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.

#

Copyright (C) 2002-2011, Fredrik Jonsson <http://jonsson.eu>

#

The CTANGLE program converts a CWEB source document into a C program which

may be compiled in the usual way. The output file includes #line specifica-

tions so that debugging can be done in terms of the CWEB source file.

#

The CWEAVE program converts the same CWEB file into a TeX file that may be

formatted and printed in the usual way. It takes appropriate care of typo-

graphic details like page layout and the use of indentation, italics,

boldface, etc., and it supplies extensive cross-index information that it

gathers automatically.

#

CWEB allows you to prepare a single document containing all the information

that is needed both to produce a compilable C program and to produce a well-

formatted document describing the program in as much detail as the writer

may desire. The user of CWEB ought to be familiar with TeX as well as C.

#

PROJECT = boxcount

CTANGLE = ctangle

CWEAVE = cweave

CC = gcc

CCOPTS = -O2 -Wall -ansi -std=iso9899:1990 -pedantic

LNOPTS = -lm

TEX = tex

DVIPS = dvips

DVIPSOPT = -ta4 -D1200

METAPOST = mp

PS2PDF = ps2pdf

all: $(PROJECT) $(PROJECT).pdf

@echo

"==="

@echo " To verify the execution performance of the BOXCOUNT program"

@echo " on the Koch snowflake fractal, run ’make verification’."

@echo

"==="

$(PROJECT): $(PROJECT).o

$(CC) $(CCOPTS) -o $(PROJECT) $(PROJECT).o $(LNOPTS)

$(PROJECT).o: $(PROJECT).w

$(CTANGLE) $(PROJECT)

$(CC) $(CCOPTS) -c $(PROJECT).c

§4 BOXCOUNT COMPILING THE SOURCE CODE 7

$(PROJECT).pdf: $(PROJECT).ps

$(PS2PDF) $(PROJECT).ps $(PROJECT).pdf

$(PROJECT).ps: $(PROJECT).dvi

$(DVIPS) $(DVIPSOPT) $(PROJECT).dvi -o $(PROJECT).ps

$(PROJECT).dvi: $(PROJECT).w

@make -C figures/

@make -C kochxmpl/

@make verification

$(CWEAVE) $(PROJECT)

$(TEX) $(PROJECT).tex

verification:

@echo

"==="

@echo " Verifying the performance of the $(PROJECT) program on the

Koch"

@echo " snowflake fractal of iteration order 11."

@echo

"==="

make koch -C koch/

make kochgraphs -C koch/

make fractaldimension -C koch/

tidy:

make -ik clean -C figures/

make -ik clean -C koch/

make -ik clean -C kochxmpl/

-rm -Rf * *.o *.exe *.dat *.tgz *.trj *.aux *.log *.idx *.scn *.dvi

clean:

make -ik tidy

-rm -Rf $(PROJECT) *.c *.pdf *mp *.toc *.tex *.ps

archive:

make -ik tidy

tar --gzip --directory=../ -cf ../$(PROJECT).tgz $(PROJECT)

This Makefile essentially executes two major calls. First, the CTANGLE program parses the CWEB source
document boxcount.w to extract a C source file boxcount.c which may be compiled in the usual way using
any ANSI C conformant compiler. The output source file includes #line specifications so that any debugging
can be done conveniently in terms of the original CWEB source file. Second, the CWEAVE program parses the
same CWEB source file to extract a plain TEX source file boxcount.tex which may be compiled in the usual
way. It takes appropriate care of typographic details like page layout and the use of indentation, italics,
boldface, and so on, and it supplies extensive cross-index information that it gathers automatically.
After having executed make in the same catalogue where the files boxcount.w and Makefile are located,

one is left with an executable file boxcount, being the ready-to-use compiled program, and a PostScript
file boxcount.ps which contains the full documentation of the program, that is to say the document you
currently are reading. Notice that on platforms running Windows NT, Windows 2000, Windows ME, or any
other operating system by Microsoft, the executable file will instead automatically be called boxcount.exe.
This convention also applies to programs compiled under the UNIX-like environment CYGWIN.

8 RUNNING THE PROGRAM BOXCOUNT §5

5. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program. The syntax for executing the program is

boxcount [options]

where options include the following, given in their long as well as their short forms (with prefixes ‘--’ and
‘-’, respectively):

--trajectoryfile, -i 〈trajectory filename〉
Specifies the input trajectory of the graph whose fractal dimension is to be estimated.
The input file should describe the trajectory as two columns of x- and y-coordinates of the
nodes, between which straight lines will interpolate the trajectory. Unless the boundary
of the computational window is explicitly stated using the -w or --computationwindow

options, the minimum and maximum x- and y-values of the specified trajectory will be used
for the automatic internal computation of the proper computational domain boundaries.

--outputfile, -o [append|overwrite] 〈output filename〉
Specifies the base name of the file to which the calculated output data will be written.
If the --outputfile or -o option is followed by “append” the estimate for the fractal
dimension will be appended to the file named 〈output filename〉.dat, which will be created
if it does not exist. If the following word instead is “overwrite” the file will, of course,
instead be overwritten.

-w, --computationwindow llx 〈xLL〉 lly 〈yLL〉 urx 〈xUR〉 ury 〈yUR〉
This option explicitly specifies the domain over which the box-counting algorithm will be
applied. By specifying this option, any automatic calculation of computational window
will be neglected.

--verbose, -v
Use this option to toggle verbose mode of the program execution, controlling the amount
of information written to standard terminal output. (Default is off, that is to say quiet
mode.)

--boxmaps, -m
If this option is present, the BOXCOUNT program will generate METAPOST code for maps
of the distribution of boxes, so-called “boxmaps”. In doing so, also the input trajectory
is included in the graphs. The convention for the naming of the output map files is that
they are saved as 〈output filename〉.N .dat, where 〈output filename〉 is the base filename as
specified using the -o or --outputfile option, N is the automatically appended current
level of resolution refinement in the box-counting (that is to say, indicating the calculation
performed for a [2N × 2N]-grid of boxes), and where dat is a file suffix as automatically
appended by the program. This option is useful for tracking the performance of the
program, and for verification of the box counting algorithm.

--graphsize 〈w〉 〈h〉
If the -m or --boxmaps option is present at the command line, then the --graphsize

option specifies the physical width w and height h in millimetres of the generated graphs,
overriding the default sizes w = 80mm and h = 80mm.

--minlevel, -Nmin 〈Nmin〉
Specifies the minimum level Nmin of grid refinement that will be used in the evaluation of
the estimate of the fractal dimension. With this option specified, the coarsest level used
in the box-counting will be a [2Nmin × 2Nmin]-grid of boxes.

--maxlevel, -Nmax 〈Nmax〉
This option is similar to the --minlevel or -Nmin options, with the difference that it
instead specifies the maximum level Nmax of grid refinement that will be used in the
evaluation of the estimate of the fractal dimension. With this option specified, the finest
level used in the box-counting will be a 2Nmax × 2Nmax -grid of boxes. If this option is
omitted, a default value of Nmax = 10 will be used as default.

§6 BOXCOUNT APPLICATION EXAMPLE: THE KOCH FRACTAL 9

6. Application example: The Koch fractal. The Koch curve is one of the earliest described fractal
curves, appearing in the 1904 article Sur une courbe continue sans tangente, obtenue par une construction

géométrique élémentaire, written by the Swedish mathematician Helge von Koch (1870–1924). In this
application example, we employ the “snowflake” variant of the Koch fractal (merely for the sake of its
beauty). The Koch snowflake fractal is constructed recursively using the following algorithm.

Algorithm A (Construction of the Koch snowflake fractal).

A1. [Create initiator.] Draw three line segments of equal length so that they form an equilateral triangle.

A2. [Line division.] Divide each of the line segments into three segments of equal length.

A3. [Replace mid segment by triangle.] Draw an equilateral triangle that has the middle segment from
step one as its base.

A4. [Remove base of triangle.] Remove the line segment that is the base of the triangle from step A3.

A5. [Recursion step.] For each of the line segments remaining, repeat steps A2 through A4.

The triangle resulting after step A1 is called the initiator of the fractal. After the first iteration of steps
A1–A4, the result should be a shape similar to the Star of David; this is called the generator of the fractal.
The Koch fractal resulting of the infinite iteration of the algorithm of construction has an infinite length,
since each time the steps above are performed on each line segment of the figure there are four times as many
line segments, the length of each being one-third the length of the segments in the previous stage. Hence,
the total length of the perimeter of the fractal increases by 4/3 at each step, and for an initiator of total
length L the total length of the perimeter at the nth step of iteration will be (4/3)nL. The fractal dimension
is hence D = ln 4/ ln 3 ≈ 1.26, being greater than the dimension of a line (D = 1) but less than, for example,
Peano’s space-filling curve (D = 2). The Koch fractal is an example of a curve which is continuous, but
not differentiable anywhere. The area of the Koch snowflake is 8/5 that of the initial triangle, so an infinite
perimeter encloses a finite area. The stepwise construction of the snowflake fractal is illustrated in Fig. 1.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 1intiator

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 2generator

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
n = 6

Figure 1. Construction of the Koch fractal of the “snowflake” type, in this case as inscribed in the unitary
circle. For this case, the length of the initiator is L = 3

√
3 while its area is A = L2/(6

√
3) = 3

√
3/2. For

each fractal recursion depth n, the trajectory consists of a total of 3× 4(n−1) connected linear segments.

10 APPLICATION EXAMPLE: THE KOCH FRACTAL BOXCOUNT §6

The data set for the Koch fractal is straightforward to generate by means of recursion, as for example by
using the following compact program (which in fact was used for the generation of the data sets for the Koch
fractals on the previous page):

/*---

| File: koch.c [ANSI-C conforming source code]

| Created: May 8, 2006, Fredrik Jonsson <fj@phys.soton.ac.uk>

| Last modified: May 8, 2006, Fredrik Jonsson <fj@phys.soton.ac.uk>

| Compile with: gcc -O2 -g -Wall -pedantic -ansi koch.c -o koch -lm

| Description: The KOCH program creates data sets corresponding to

| the Koch fractal, for the purpose of acting as test objects for

| the BOXCOUNT program. The KOCH program is simply executed by

| ’koch <N>’, where <N> is an integer describing the maximum

| depth of recursion in the generation of the fractal data set.

| If invoked without any arguments, <N>=6 is used as default.

| The generated trajectory is written to standard output.

| Copyright (C) 2006 Fredrik Jonsson <fj@phys.soton.ac.uk>

===*/

#include <math.h>

#include <stdio.h>

extern char *optarg;

void kochsegment(double xa,double ya,double xb,double yb,

int depth,int maxdepth) {

double xca,yca,xcb,ycb,xcc,ycc;

if (depth==maxdepth) {

fprintf(stdout,"%2.8f %2.8f\n",xb,yb);

} else {

xca=xa+(xb-xa)/3.0;

yca=ya+(yb-ya)/3.0;

xcb=xb-(xb-xa)/3.0;

ycb=yb-(yb-ya)/3.0;

xcc=(xa+xb)/2.0-(yb-ya)/(2.0*sqrt(3.0));

ycc=(ya+yb)/2.0+(xb-xa)/(2.0*sqrt(3.0));

kochsegment(xa,ya,xca,yca,depth+1,maxdepth);

kochsegment(xca,yca,xcc,ycc,depth+1,maxdepth);

kochsegment(xcc,ycc,xcb,ycb,depth+1,maxdepth);

kochsegment(xcb,ycb,xb,yb,depth+1,maxdepth);

}

}

int main(int argc, char *argv[]) {

int maxdepth=6;

if (argc>1) sscanf(argv[1],"%d",&maxdepth);

if (maxdepth>0) {

fprintf(stdout,"%2.8f %2.8f\n",0.0,1.0);

kochsegment(0.0,1.0,sqrt(3.0)/2.0,-0.5,1,maxdepth);

kochsegment(sqrt(3.0)/2.0,-0.5,-sqrt(3.0)/2.0,-0.5,1,maxdepth);

kochsegment(-sqrt(3.0)/2.0,-0.5,0.0,1.0,1,maxdepth);

}

return(0);

}

§6 BOXCOUNT APPLICATION EXAMPLE: THE KOCH FRACTAL 11

The boxcounting dimension of the Koch snowflake fractal can now be investigated with assistance of the
BOXCOUNT program. In the analysis as here presented, this is done using the following Makefile:

#

Makefile designed for use with gcc, MetaPost and plain TeX.

#

Copyright (C) 2002-2006, Fredrik Jonsson <fj@phys.soton.ac.uk>

#

CC = gcc

CCOPTS = -O2 -Wall -ansi -std=iso9899:1990 -pedantic

LNOPTS = -lm

TEX = tex

DVIPS = dvips

METAPOST = mpost

#

Define path and executable file for the BOXCOUNT program, used for

calculating estimates of the box-counting fractal dimension of a

trajectory in the plane.

#

BOXCOUNTPATH = ../

BOXCOUNT = $(BOXCOUNTPATH)/boxcount

#

Define path and executable file for the KOCH program, used for generating

the trajectory of the Koch snowflake fractal.

#

KOCHPATH = ../koch/

KOCH = $(KOCHPATH)/koch

all: koch kochgen kochtab

koch:

make -C ../koch/

kochgen:

$(KOCH) 7 > koch.trj

$(BOXCOUNT) --verbose --boxmaps --graphsize 42.0 42.0 \

--computationwindow llx -1.1 lly -1.1 urx 1.1 ury 1.1 \

--minlevel 3 --maxlevel 8 \

--trajectoryfile koch.trj --outputfile overwrite koch

for k in 03 04 05 06 07 08; do \

$(METAPOST) koch.$$k.mp ;\

$(TEX) -jobname=koch.$$k ’\input epsf\nopagenumbers\

\centerline\epsfxsize=120mm\epsfboxkoch.’$$k’.1\bye’;\

$(DVIPS) -D1200 -E koch.$$k -o koch.$$k.eps;\

done

kochtab:

$(KOCH) 7 > koch.trj

$(BOXCOUNT) --verbose --minlevel 3 --maxlevel 14 \

--computationwindow llx -1.1 lly -1.1 urx 1.1 ury 1.1 \

--trajectoryfile koch.trj --outputfile overwrite koch

clean:

-rm -Rf koch * *.o *.exe *.dat *.mp *.mpx *.trj

-rm -Rf *.tex *.aux *.log *.toc *.idx *.scn *.dvi *.1 *.eps

12 APPLICATION EXAMPLE: THE KOCH FRACTAL BOXCOUNT §6

Having executed the Makefile as displayed in the previous page, where a recursion depth of n = 7 is used
for the generation of the Koch fractal, we are left with a set of images of the consecutively refined grids in
the boxcounting algorithm, and a table containing the estimates of the boxcounting dimension of the Koch
snowflake fractal. In Fig. 2 the resulting maps of the boxes used in the boxcounting algorithm for refinement
levels m = 3, 4, . . . , 8 are shown, and as the grid refinement is finer and finer, the boxes finally will be barely
visible in the limited resolution of computer graphics, on screen as well as in the generated Encapsulated
PostScript code.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

Figure 2. Consecutive steps of refinement m = 3, 4, . . . , 8 of the grid of boxes covering the input trajectory,
in this case a Koch snowflake fractal of recursion depth n = 7 (see Fig. 1). At each step m of refinement,
a virtual grid of 2m × 2m boxes is superimposed on the trajectory (fractal) and the number Nm of boxes
covering the trajectory are counted. For the Koch snowflake fractal of recursion depth n = 7, the trajectory
consists of a total of 3× 4(7−1) = 12288 connected linear segments.

§6 BOXCOUNT APPLICATION EXAMPLE: THE KOCH FRACTAL 13

The estimated boxcounting dimension Dm = ln(Nm)/ ln(2m), with Nm as previously denoting the number
of boxes in a 2m × 2m-grid required to cover the entire curve, is displayed in Table A.1. The values for the
estimates could be compared with the analytically obtained value of D = ln 4/ ln 3 ≈ 1.26 for the fractal
dimension. However, it should be emphasized that the box counting dimension here just is an estimate of one
definition of the fractal dimension, which in many cases do not equal to other measures, and that we in the
computation of the estimate always will arrive at a truncated result due to a limited precision and a limited
amount of memory resources and computational time. As can be seen in the table, the initial estimates at
lower resolutions are pretty crude, but in the final estimate we nevertheless end up with the box counting
estimate of the fractal dimension as 1.29, which is reasonably close to the analytically obtained value of
D ≈ 1.26. Of course, further refinements such as Richardson extrapolation could be applied to increase the
accuracy, but this is outside of the scope of the BOXCOUNT program, which only serves to provide the raw,
basic algorithm of boxcounting.†

Table A.1 Boxcounting estimates of the fractal dimension of the Koch snowflake fractal of recursion order
n = 7. In the table, m is the refinement order as indicated in the graphs in Fig. 2, Nm is the number of
covering boxes counted at refinement level m, and Dm = ln(Nm)/ ln(2m) is the estimate of the boxcounting
dimension.

m Nm Dm = ln(Nm)/ ln(2m)
3 44 1.8198
4 96 1.6462
5 196 1.5229
6 504 1.4962
7 1180 1.4578
8 2856 1.4350
9 6844 1.4156
10 15620 1.3931
11 32320 1.3618
12 66200 1.3345
13 133600 1.3098
14 268804 1.2883

† For discussions on different definitions of the fractal dimension, see the English Wikipedia section on the
Minkowski–Bouligand dimension, http://en.wikipedia.org/wiki/Minkowski-Bouligand_dimension.

14 THE MAIN PROGRAM BOXCOUNT §7

7. The main program. Here follows the general outline of the main program.

〈Library inclusions 8 〉
〈Global definitions 9 〉
〈Global variables 10 〉
〈Subroutines 23 〉
int main (int argc , char ∗argv [])
{
〈Declaration of local variables 11 〉
〈 Initialize variables 12 〉
〈Parse command line for parameters 13 〉
〈Display starting time of program execution 14 〉
〈Load input trajectory from file 15 〉
〈Open file for output of logarithmic estimate 16 〉
〈Extract boundary of global window of computation from input trajectory 17 〉
〈Get number of boxes covering the trajectory for all levels of refinement in resolution 18 〉
〈Compute the logarithmic estimate of the fractal dimension 19 〉
〈Save or append the logarithmic estimate to output file 20 〉
〈Close file for output of logarithmic estimate 21 〉
〈Display elapsed execution time 22 〉
return (SUCCESS);

}

8. Library dependencies. The standard ANSI C libraries included in this program are:

math.h For access to common mathematical functions.

stdio.h For file access and any block involving fprintf .

stdlib.h For access to the exit function.

string.h For string manipulation, strcpy , strcmp etc.

ctype.h For access to the isalnum function.

〈Library inclusions 8 〉 ≡
#include <math.h>

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

This code is used in section 7.

§9 BOXCOUNT THE MAIN PROGRAM 15

9. Global definitions. There are just a few global definitions present in the BOXCOUNT program:

VERSION The current program revision number.

COPYRIGHT The copyright banner.

SUCCESS The return code for successful program termination.

FAILURE The return code for unsuccessful program termination.

NCHMAX The maximum number of characters allowed in strings for storing file names,
including path.

APPEND Code for the flag output mode , used to determine if output should append to an
existing file.

OVERWRITE Code for the flag output mode , used to determine if output should overwrite an
existing file.

〈Global definitions 9 〉 ≡
#define VERSION "1.6"

#define COPYRIGHT "Copyright (C) 2006−2011, Fredrik Jonsson"

#define SUCCESS (0)
#define FAILURE (1)
#define NCHMAX (256)
#define APPEND 1
#define OVERWRITE 2

This code is used in section 7.

10. Declaration of global variables. The only global variables allowed in my programs are optarg , which is
a pointer to the the string of characters that specified the call from the command line, and progname , which
simply is a pointer to the string containing the name of the program, as it was invoked from the command
line.

〈Global variables 10 〉 ≡
extern char ∗optarg ;
char ∗progname ;

This code is used in section 7.

16 THE MAIN PROGRAM BOXCOUNT §11

11. Declaration of local variables of the main program. In CWEB one has the option of adding variables
along the program, for example by locally adding temporary variables related to a given sub-block of code.
However, the philosophy in the BOXCOUNT program is to keep all variables of the main section collected
together, so as to simplify tasks as, for example, tracking down a given variable type definition. The local
variables of the program are as follows:

verbose Boolean flag which, if being nonzero, tells the program to display information at
terminal output during program execution.

user set compwin Boolean flag which indicates whether the user has explicitly stated a window of
computation or not.

output mode Variable which states whether the estimate of fractal dimension should be ap-
pended to an existing file which is created if it does not exist (for output mode =
APPEND), or if the data should overwrite already existing data in the file (for
output mode = OVERWRITE).

make boxmaps If nonzero, then graphs showing the distribution of covering boxes will be gener-
ated.

∗num boxes Pointer to array holding the number of boxes at various depths of division.

initime The time at which the BOXCOUNT program was initialized.

now Dummy variable for extraction of current time from the system clock.

mm The number of points M in the input trajectory. This is the length of the vectors
x traj and y traj as described below.

nn Gives the number of boxes in the x- or y-directions as 2N .

nnmax The maximum refinement depth Nmax of N .

nnmin The minimum refinement depth Nmin of N .

global llx , global lly Lower-left coordinates of global window of computation.

global urx , global ury Upper-right coordinates of global window of computation.

∗x traj ,∗y traj Vectors containing the x- and y-values of the coordinates along the input trajec-
tory.

∗x,∗y Variables for keeping the refinement and number of boxes. (This needs to be
changed as they are easily confused with x and y coordinates of the trajectory.)

∗trajectory file Input file pointer, for reading the trajectory whose fractal dimension is to be
estimated.

∗frac estimate file Output file pointer, for saving the estimated fractal dimension of the input
trajectory.

∗boxmap file Output file pointer, for saving maps of the spatial locations of the boxes covering
the trajectory.

boxgraph width The physical width in millimetres of the generated METAPOST boxmap graphs.

boxgraph height The physical height in millimetres of the generated METAPOST boxmap graphs.

trajectory filename String for keeping the name of the file containing the input trajectory.

output filename String for keeping the base name of the set of output files.

frac estimate filename String keeping the name of the file to which the estimate of the fractal dimension
will be saved.

boxmap filename String for keeping the name of the file to which METAPOST code for maps of the
spatial distribution of boxes will be written.

no arg Variable for extracting the number of input arguments present on the command
line as the program is executed.

i Dummy variable used in loops when reading the input trajectory.

§11 BOXCOUNT THE MAIN PROGRAM 17

∗fracdimen estimates Vector keeping the values characterizing estimated fractal dimension for various
orders of N .

ave , adev , sdev The average, average deviation, and standard deviation of the estimated fractal
dimension for various orders of refinement N , as stored in fracdimen estimates .

var , skew , curt The variance, skewness, and kurtosis of the estimated fractal dimension for
various orders of refinement N , as stored in fracdimen estimates .

Generally in this program, the maximum number of characters a file name string can contain is NCHMAX, as
defined in the definitions section of the program.

〈Declaration of local variables 11 〉 ≡
short verbose , user set compwin , output mode , make boxmaps ;
long int ∗num boxes ;
time t initime ;
time t now ;
long mm , nn , nnmin , nnmax ;
double global llx , global lly , global urx , global ury ;
double ∗x traj , ∗y traj , ∗x, ∗y;
FILE ∗trajectory file , ∗frac estimate file , ∗boxmap file ;
char trajectory filename [NCHMAX], output filename [NCHMAX], frac estimate filename [NCHMAX];
char boxmap filename [NCHMAX];
double boxgraph width , boxgraph height ;
int no arg ;
long i;
double ∗fracdimen estimates , ave , adev , sdev , var , skew , curt ;

This code is used in section 7.

12. Initialization of variables.

〈 Initialize variables 12 〉 ≡
verbose = 0; /∗ Verbose mode is off by default ∗/
user set compwin = 0; /∗ Before the command-line is parsed, nothing is known of these settings ∗/
output mode = OVERWRITE; /∗ default mode is to overwrite existing files ∗/
make boxmaps = 0; /∗ Default is to not create graphs of the box distributions ∗/
nnmin = 0; /∗ Default value for Nmin ∗/
nnmax = 10; /∗ Default value for Nmax ∗/
strcpy (output filename , "out"); /∗ Default output file basename. ∗/
strcpy (trajectory filename , ""); /∗ To indicate that no filename has been set yet. ∗/
boxgraph width = 80.0; /∗ Default graph width in millimetres ∗/
boxgraph height = 56.0; /∗ Default graph height in millimetres ∗/
trajectory file = Λ;
frac estimate file = Λ;
boxmap file = Λ;
initime = time (Λ); /∗ Time of initialization of the program. ∗/

This code is used in section 7.

18 THE MAIN PROGRAM BOXCOUNT §13

13. Parsing command line options. All input parameters are passed to the program through command line
options and arguments to the program. The syntax of command line options is listed whenever the program
is invoked without any options, or whenever any of the --help or -h options are specified at startup.

〈Parse command line for parameters 13 〉 ≡
{
progname = strip away path (argv [0]);
fprintf (stdout , "This is %s v.%s. %s\n", progname , VERSION, COPYRIGHT);
no arg = argc ;
while (−−argc) {
if (¬strcmp(argv [no arg − argc], "−o") ∨ ¬strcmp(argv [no arg − argc], "−−outputfile")) {

−−argc ;
if (¬strcmp(argv [no arg − argc], "append") ∨ ¬strcmp(argv [no arg − argc], "a")) {
output mode = APPEND;

}
else if (¬strcmp(argv [no arg − argc], "overwrite") ∨ ¬strcmp(argv [no arg − argc], "o")) {
output mode = OVERWRITE;

}
else {
fprintf (stderr , "%s: Error in ’−o’ or ’−−outputfile’ option!", progname);
exit (FAILURE);

}
−−argc ;
strcpy (output filename , argv [no arg − argc]);

}
else if (¬strcmp(argv [no arg−argc], "−w")∨¬strcmp(argv [no arg−argc], "−−computationwindow"))
{
user set compwin = 1;
−−argc ;
if (¬strcmp(argv [no arg − argc], "llx")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&global llx)) {
fprintf (stderr , "%s: Error in parsing lower−left x−value.\n", progname);
exit (FAILURE);

}
}
else {
fprintf (stderr , "%s: Error in computation window option\n", progname);
fprintf (stderr , "%s: Expecting ’llx’\n", progname);
exit (FAILURE);

}
−−argc ;
if (¬strcmp(argv [no arg − argc], "lly")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&global lly)) {
fprintf (stderr , "%s: Error in parsing lower−left y−value.\n", progname);
exit (FAILURE);

}
}
else {
fprintf (stderr , "%s: Error in computation window option\n", progname);
fprintf (stderr , "%s: Expecting ’lly’\n", progname);
exit (FAILURE);

§13 BOXCOUNT THE MAIN PROGRAM 19

}
−−argc ;
if (¬strcmp(argv [no arg − argc], "urx")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&global urx)) {
fprintf (stderr , "%s: Error in parsing lower−left x−value.\n", progname);
exit (FAILURE);

}
}
else {
fprintf (stderr , "%s: Error in computation window option\n", progname);
fprintf (stderr , "%s: Expecting ’urx’\n", progname);
exit (FAILURE);

}
−−argc ;
if (¬strcmp(argv [no arg − argc], "ury")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&global ury)) {
fprintf (stderr , "%s: Error in parsing lower−left y−value.\n", progname);
exit (FAILURE);

}
}
else {
fprintf (stderr , "%s: Error in computation window option\n", progname);
fprintf (stderr , "%s: Expecting ’ury’\n", progname);
exit (FAILURE);

}
}
else if (¬strcmp(argv [no arg −argc], "−i")∨¬strcmp(argv [no arg −argc], "−−trajectoryfile")) {

−−argc ;
strcpy (trajectory filename , argv [no arg − argc]);

}
else if (¬strcmp(argv [no arg − argc], "−v") ∨ ¬strcmp(argv [no arg − argc], "−−verbose")) {
verbose = (verbose ? 0 : 1);

}
else if (¬strcmp(argv [no arg − argc], "−h") ∨ ¬strcmp(argv [no arg − argc], "−−help")) {
showsomehelp ();
exit (SUCCESS);

}
else if (¬strcmp(argv [no arg − argc], "−m") ∨ ¬strcmp(argv [no arg − argc], "−−boxmaps")) {
make boxmaps = 1;

}
else if (¬strcmp(argv [no arg − argc], "−−graphsize")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&boxgraph width)) {
fprintf (stderr , "%s: Error in width of ’−−graphsize’ option.\n", progname);
exit (FAILURE);

}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&boxgraph height)) {
fprintf (stderr , "%s: Error in height of ’−−graphsize’ option.\n", progname);
exit (FAILURE);

20 THE MAIN PROGRAM BOXCOUNT §13

}
}
else if (¬strcmp(argv [no arg − argc], "−−minlevel") ∨ ¬strcmp(argv [no arg − argc], "−Nmin")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&nnmin)) {
fprintf (stderr , "%s: Error in ’−−minlevel’ or ’−Nmin’ option.\n", progname);
exit (FAILURE);

}
}
else if (¬strcmp(argv [no arg − argc], "−−maxlevel") ∨ ¬strcmp(argv [no arg − argc], "−Nmax")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&nnmax)) {
fprintf (stderr , "%s: Error in ’−−maxlevel’ or ’−Nmax’ option.\n", progname);
exit (FAILURE);

}
}
else {
fprintf (stderr , "%s: Specified option ’%s’ invalid!\n", progname , argv [no arg − argc]);
showsomehelp ();
exit (FAILURE);

}
}

}
This code is used in section 7.

14. Display starting time of program execution.

〈Display starting time of program execution 14 〉 ≡
{
fprintf (stdout , "%s: Program execution started %s", progname , ctime (&initime));

}
This code is used in section 7.

§15 BOXCOUNT THE MAIN PROGRAM 21

15. Load input trajectory from file. This is the section where the trajectory to be analyzed is loaded into
the memory, and where the number M of input coordinates present in the input data is determined by a
single call to the subroutine num coordinate pairs ().

〈Load input trajectory from file 15 〉 ≡
{
if (¬strcmp(trajectory filename , "")) {
fprintf (stderr , "%s: No input trajectory specified!\n", progname);
fprintf (stderr , "%s: Please use the ’−−trajectoryfile’ option.\n", progname);
fprintf (stderr , "%s: Use ’−−help’ option to display a help message.\n", progname);
exit (FAILURE);

}
if ((trajectory file = fopen (trajectory filename , "r")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for loading trajectory!\n", progname ,

trajectory filename);
exit (FAILURE);

}
mm = num coordinate pairs (trajectory file);
x traj = dvector (1,mm);
y traj = dvector (1,mm);
for (i = 1; i ≤ mm ; i++) {
fscanf (trajectory file , "%lf",&x traj [i]); /∗ scan x-coordinate ∗/
fscanf (trajectory file , "%lf",&y traj [i]); /∗ scan y-coordinate ∗/

}
fclose (trajectory file);
if (verbose) {
fprintf (stdout , "%s: Loaded %ld coordinate pairs from file ’%s’.\n", progname ,mm ,

trajectory filename);
}

}
This code is used in section 7.

22 THE MAIN PROGRAM BOXCOUNT §16

16. Opening files for output by the program.

〈Open file for output of logarithmic estimate 16 〉 ≡
{
if (¬strcmp(output filename , "")) {
fprintf (stderr , "%s: No output base name specified!\n", progname);
fprintf (stderr , "%s: Please use the ’−−outputfile’ option.\n", progname);
exit (FAILURE);

}
sprintf (frac estimate filename , "%s.dat", output filename);
if (output mode ≡ APPEND) {
if ((frac estimate file = fopen (frac estimate filename , "a")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for output!\n", progname , frac estimate filename);
exit (FAILURE);

}
fseek (frac estimate file , 0L, SEEK_END); /∗ set file pointer to the end of the file ∗/

}
else if (output mode ≡ OVERWRITE) {
if ((frac estimate file = fopen (frac estimate filename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for loading trajectory!\n", progname ,

frac estimate filename);
exit (FAILURE);

}
fseek (frac estimate file , 0L, SEEK_SET); /∗ set file pointer to the beginning of the file ∗/

}
else {
fprintf (stderr , "%s: Error: Output mode (output_mode) undefined!", progname);
exit (FAILURE);

}
}

This code is used in section 7.

§17 BOXCOUNT THE MAIN PROGRAM 23

17. Extract global window of computation. This block will only be executed if there was no explicit com-
putational window stated at startup of the program (that is to say, with the -w or --computationwindow op-
tion). In order to determine the minimum area covering the entire input trajectory, this section scans sequen-
tially through the trajectory and finds the minimum and maximum of the x- and y-coordinates. These values
then form the lower-left and upper-right corner coordinates (global llx , global lly) and (global urx , global ury).

〈Extract boundary of global window of computation from input trajectory 17 〉 ≡
{
if (¬user set compwin) {
global llx = x traj [1];
global lly = y traj [1];
global urx = global llx ;
global ury = global lly ;
for (i = 1; i ≤ mm ; i++) {
if (x traj [i] > global urx) global urx = x traj [i];
if (y traj [i] > global ury) global ury = y traj [i];
if (x traj [i] < global llx) global llx = x traj [i];
if (y traj [i] < global lly) global lly = y traj [i];

}
if (verbose) {
fprintf (stdout , "%s: Global box−counting window:\n", progname);
fprintf (stdout , "%s: (llx,lly)=(%2.8f,%2.8f)\n", progname , global llx , global lly);
fprintf (stdout , "%s: (urx,ury)=(%2.8f,%2.8f)\n", progname , global urx , global ury);

}
}

}
This code is used in section 7.

24 THE MAIN PROGRAM BOXCOUNT §18

18. Get the number of boxes covering the trajectory for all levels of refinement. This is the main loop
where the program iterates over all the refinement levels and meanwhile gather how many boxes are needed
to cover the trajectory as function of the refinement index N for Nmin ≤ N ≤ Nmax. In the loop, the program
starts with a grid of [2Nmin × 2Nmin] and ends with a grid of [2Nmax × 2Nmax] boxes, at each step of refinement
increasing the number of boxes by a factor of four. At each level of increasing resolution, the program relies
on the routines get num covering boxes with boxmaps () or get num covering boxes () to perform the actual
box-counting. The results of the box counting are stored in the vector num boxes , which is used later on in
the actual extraction of the estimate of fractal dimension.

〈Get number of boxes covering the trajectory for all levels of refinement in resolution 18 〉 ≡
{
num boxes = livector (1, nnmax);
nn = 1;
for (i = 1; i ≤ nnmin − 1; i++) nn = 2 ∗ nn ; /∗ This leaves nn as 2(Nmin−1) ∗/
for (i = nnmin ; i ≤ nnmax ; i++) { /∗ For all levels in refinement of grid resolution ∗/
nn = 2 ∗ nn ;
if (make boxmaps) { /∗ do we wish to generate METAPOST graphs of the box distribution? ∗/
sprintf (boxmap filename , "%s−%02ld.mp", output filename , i);
num boxes [i] = get num covering boxes with boxmaps (x traj , y traj ,mm , i, global llx , global lly ,

global urx , global ury , boxmap filename , boxgraph width , boxgraph height , trajectory filename);
}
else { /∗ if not, just use the regular number-crunching routine ∗/
num boxes [i] = get num covering boxes (x traj , y traj ,mm , i, global llx , global lly , global urx ,

global ury);
}
if (verbose) {
fprintf (stdout , "%s: N=%ld (%ldx%ld−grid of boxes): ", progname , i, nn , nn);
fprintf (stdout , "Trajectory covered by %ld boxes\n", num boxes [i]);

}
}

}
This code is used in section 7.

§19 BOXCOUNT THE MAIN PROGRAM 25

19. Compute the logarithmic estimate of the fractal dimension. Having completed the task of actually
calculating the number of boxes necessary to cover the trajectory, for varying box dimensions of width
(global urx − global llx)/2n and height (global ury − global lly)/2n, for n = 1, 2, . . . , N , the only remaining
arithmetics is to actually calculate the estimate for the fractal dimension. This is done by performing the
fit of the linear function y = ax+ b to the data set obtained with 2 ln(n) as abscissa and ln(num boxes (n))
as ordinata.
Also in this block, we analyze whether the option make boxmaps is set as true (1) or not (0), determining

whether a graph of the number of boxes as function of division depth should be written to file as well.
In the fitting of the linear function y = ax+b to the data set (x1, y1), (x2, y2),. . .,(xN , yN), the parameters

a and b can be explicitly obtained from the summation formulas

a =
1

D

(

N

N
∑

k=1

xkyk −
N
∑

k=1

xk

N
∑

k=1

yk

)

, b =
1

N

(

N
∑

k=1

yk − a

N
∑

k=1

xk

)

,

where

D ≡ N

N
∑

k=1

x2
k −

(

N
∑

k=1

xk

)2

.

〈Compute the logarithmic estimate of the fractal dimension 19 〉 ≡
{
x = dvector (nnmin , nnmax);
y = dvector (nnmin , nnmax);
fracdimen estimates = dvector (nnmin , nnmax);
nn = 1;
for (i = 1; i ≤ nnmax ; i++) {
nn = 2 ∗ nn ;
if (nnmin ≤ i) x[i] = log ((double) nn);

}
for (i = nnmin ; i ≤ nnmax ; i++) y[i] = log (num boxes [i]);
for (i = nnmin ; i ≤ nnmax ; i++) fracdimen estimates [i] = y[i]/x[i];
if (verbose) {
for (i = nnmin ; i ≤ nnmax ; i++) {
fprintf (stdout , "%s: N=%ld, fractal dimension estimate=%f\n", progname , i,

fracdimen estimates [i]);
}

}
moment (fracdimen estimates , nnmin , nnmax ,&ave ,&adev ,&sdev ,&var ,&skew ,&curt);
if (verbose) {
fprintf (stdout , "%s: Estimate of fractal dimension: %f\n", progname , ave);
fprintf (stdout , "%s: Average deviation: %f\n", progname , adev);
fprintf (stdout , "%s: Standard deviation: %f\n", progname , sdev);
fprintf (stdout , "%s: Skewness: %f\n", progname , skew);

}
free livector (num boxes , 1, nnmax); /∗ release the memory occupied by num boxes ∗/
free dvector (fracdimen estimates , nnmin , nnmax);
free dvector (x, nnmin , nnmax); /∗ release the memory occupied by x ∗/
free dvector (y, nnmin , nnmax); /∗ release the memory occupied by y ∗/

}
This code is used in section 7.

26 THE MAIN PROGRAM BOXCOUNT §20

20. Save the fractal dimension to file.

〈Save or append the logarithmic estimate to output file 20 〉 ≡
{
if (output mode ≡ APPEND) {
fseek (frac estimate file , 0L, SEEK_END);

}
else if (output mode ≡ OVERWRITE) {
fseek (frac estimate file , 0L, SEEK_SET);

}
fprintf (frac estimate file , "%f %f %f\n", ave , sdev , skew);

}
This code is used in section 7.

21. Close any open output files.

〈Close file for output of logarithmic estimate 21 〉 ≡
{
fclose (frac estimate file);

}
This code is used in section 7.

22. Display elapsed execution time.

〈Display elapsed execution time 22 〉 ≡
{
now = time (Λ);
if (verbose)
fprintf (stdout , "%s: Total execution time: %d s\n", progname , ((int) difftime (now , initime)));

fprintf (stdout , "%s: Program execution closed %s", progname , ctime (&now));
}

This code is used in section 7.

§23 BOXCOUNT SUBROUTINES 27

23. Subroutines. In this section, all subroutines as used by the main program are listed.

〈Subroutines 23 〉 ≡
〈Routine for computation of average, average deviation and standard deviation 24 〉
〈Routine for obtaining the number of coordinate pairs in a file 25 〉
〈Routines for removing preceding path of filenames 26 〉
〈Routines for memory allocation of vectors and matrices 29 〉
〈Routine for displaying help message 38 〉
〈Routine for determining whether two lines intersect or not 39 〉
〈Routine for determining whether a line and a box intersect or not 40 〉
〈Routines for calculation of number of boxes covering the trajectory 41 〉

This code is used in section 7.

24. Routine for computation of average, average deviation and standard deviation. This routine is adopted
from Numerical Recipes in C.

〈Routine for computation of average, average deviation and standard deviation 24 〉 ≡
void moment (double data [], int nnmin , int nnmax ,double ∗ave ,double ∗adev ,double

∗sdev ,double ∗var ,double ∗skew ,double ∗curt)
{
int j;
double ep = 0.0, s, p;

if (nnmax − nnmin ≤ 1) {
fprintf (stderr , "%s: Error in routine moment()! ", progname);
fprintf (stderr , "(nnmax−nnmin>1 is a requirement)\n");
exit (FAILURE);

}
s = 0.0;
for (j = nnmin ; j ≤ nnmax ; j++) s += data [j];
∗ave = s/(nnmax − nnmin + 1);
∗adev = (∗var) = (∗skew) = (∗curt) = 0.0;
for (j = nnmin ; j ≤ nnmax ; j++) {
∗adev += fabs (s = data [j]− (∗ave));
ep += s;
ep += s;
∗var += (p = s ∗ s);
∗skew += (p ∗= s);
∗curt += (p ∗= s);

}
∗adev /= (nnmax − nnmin + 1);
∗var = (∗var − ep ∗ ep/(nnmax − nnmin + 1))/(nnmax − nnmin);
∗sdev = sqrt (∗var);
if (∗var) {
∗skew /= ((nnmax − nnmin + 1) ∗ (∗var) ∗ (∗sdev));
∗curt = (∗curt)/((nnmax − nnmin + 1) ∗ (∗var) ∗ (∗var))− 3.0;

}
else {
fprintf (stderr , "%s: Error in routine moment()! ", progname);
fprintf (stderr , "No skew/kurtosis for zero variance\n");
exit (FAILURE);

}
}

This code is used in section 23.

28 SUBROUTINES BOXCOUNT §25

25. Routine for obtaining the number of coordinate pairs in a file. This routine is called prior to loading
the trajectory, in order to get the size needed for allocating the memory for the trajectory vector. As the
number of coordinates M has been established, two vectors x traj [1..M] and y traj [1..M], containing the
coordinates (xm, ym) of the trajectory.

〈Routine for obtaining the number of coordinate pairs in a file 25 〉 ≡
long int num coordinate pairs (FILE ∗trajectory file)
{
double tmp ;
int tmpch ;
long int mm = 0;

fseek (trajectory file , 0L, SEEK_SET); /∗ rewind file to beginning ∗/
while ((tmpch = getc(trajectory file)) 6= EOF) {
ungetc (tmpch , trajectory file);
fscanf (trajectory file , "%lf",&tmp); /∗ Read away the x coordinate ∗/
fscanf (trajectory file , "%lf",&tmp); /∗ Read away the y coordinate ∗/
mm++;
tmpch = getc(trajectory file); /∗ Read away blanks and linefeeds ∗/
while ((tmpch 6= EOF) ∧ (¬isdigit (tmpch))) tmpch = getc(trajectory file);
if (tmpch 6= EOF) ungetc (tmpch , trajectory file);

}
fseek (trajectory file , 0L, SEEK_SET); /∗ rewind file to beginning ∗/
return (mm);

}
This code is used in section 23.

26. Routines for removing preceding path of filenames. In this block all routines related to removing pre-
ceding path strings go. Not really fancy programming, and no contribution to any increase of numerical effi-
ciency or precision; just for the sake of keeping a tidy terminal output of the program. The strip away path ()
routine is typically called when initializing the program name string progname from the command line string
argv [0], and is typically located in the blocks related to parsing of the command line options.

〈Routines for removing preceding path of filenames 26 〉 ≡
〈Routine for checking valid path characters 27 〉
〈Routine for stripping away path string 28 〉

This code is used in section 23.

27. Checking for a valid path character. The pathcharacter routine takes one character ch as argument,
and returns 1 (“true”) if the character is valid character of a path string, otherwise 0 (“false”) is returned.

〈Routine for checking valid path characters 27 〉 ≡
short pathcharacter (int ch)
{
return (isalnum (ch)∨ (ch ≡ ’.’)∨ (ch ≡ ’/’)∨ (ch ≡ ’\\’)∨ (ch ≡ ’_’)∨ (ch ≡ ’−’)∨ (ch ≡ ’+’));

}
This code is used in section 26.

§28 BOXCOUNT SUBROUTINES 29

28. Routine for stripping away path string of a file name. The strip away path () routine takes a character
string filename as argument, and returns a pointer to the same string but without any preceding path
segments. This routine is, for example, useful for removing paths from program names as parsed from the
command line.

〈Routine for stripping away path string 28 〉 ≡
char ∗strip away path (char filename [])
{
int j, k = 0;

while (pathcharacter (filename [k])) k++;
j = (−−k); /∗ this is the uppermost index of the full path+file string ∗/
while (isalnum ((int)(filename [j]))) j−−;
j++; /∗ this is the lowermost index of the stripped file name ∗/
return (&filename [j]);

}
This code is used in section 26.

29. Subroutines for memory allocation. Here follows the routines for memory allocation and deallocation
of double precision real and complex valued vectors, as used for storing the optical field distribution in the
grating, the refractive index distribution of the grating, etc.

〈Routines for memory allocation of vectors and matrices 29 〉 ≡
〈Routine for allocation of vectors of double precision 30 〉
〈Routine for deallocation of vectors of integer precision 33 〉
〈Routine for allocation of vectors of integer precision 32 〉
〈Routine for deallocation of vectors of double precision 31 〉
〈Routine for allocation of matrices of short integer precision 36 〉
〈Routine for deallocation of matrices of short integer precision 37 〉

This code is used in section 23.

30. The dvector routine allocates a real-valued vector of double precision, with vector index ranging from
nl to nh .

〈Routine for allocation of vectors of double precision 30 〉 ≡
double ∗dvector (long nl , long nh)
{
double ∗v;
v = (double ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (double)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in dvector()\n");
exit (FAILURE);

}
return v − nl + 1;

}
This code is used in section 29.

31. The free dvector routine release the memory occupied by the real-valued vector v[nl .. nh].

〈Routine for deallocation of vectors of double precision 31 〉 ≡
void free dvector (double ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}
This code is used in section 29.

30 SUBROUTINES BOXCOUNT §32

32. The ivector routine allocates a real-valued vector of integer precision, with vector index ranging from
nl to nh .

〈Routine for allocation of vectors of integer precision 32 〉 ≡
int ∗ivector (long nl , long nh)
{
int ∗v;
v = (int ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (int)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in ivector()\n");
exit (FAILURE);

}
return v − nl + 1;

}
See also section 34.

This code is used in section 29.

33. The free ivector routine release the memory occupied by the real-valued vector v[nl .. nh].

〈Routine for deallocation of vectors of integer precision 33 〉 ≡
void free ivector (int ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}
See also section 35.

This code is used in section 29.

34. The livector routine allocates a real-valued vector of long integer precision, with vector index ranging
from nl to nh .

〈Routine for allocation of vectors of integer precision 32 〉 +≡
long int ∗livector (long nl , long nh)
{
long int ∗v;
v = (long int ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (long int)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in livector()\n");
exit (FAILURE);

}
return v − nl + 1;

}

35. The free livector routine release the memory occupied by the real-valued vector v[nl .. nh].

〈Routine for deallocation of vectors of integer precision 33 〉 +≡
void free livector (long int ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}

§36 BOXCOUNT SUBROUTINES 31

36. The simatrix routine allocates an array of short integer precision, with array row index ranging from
nrl to nrh and column index ranging from ncl to nch .

〈Routine for allocation of matrices of short integer precision 36 〉 ≡
short int ∗∗simatrix (long nrl , long nrh , long ncl , long nch)
{
long i, nrow = nrh − nrl + 1, ncol = nch − ncl + 1;
short int ∗∗m;

m = (short int ∗∗) malloc((size t)((nrow + 1) ∗ sizeof (short int ∗)));
if (¬m) {
fprintf (stderr , "%s: Allocation failure 1 in simatrix()\n", progname);
exit (FAILURE);

}
m += 1;
m −= nrl ;
m[nrl] = (short int ∗) malloc((size t)((nrow ∗ ncol + 1) ∗ sizeof (short int)));
if (¬m[nrl]) {
fprintf (stderr , "%s: Allocation failure 2 in simatrix()\n", progname);
exit (FAILURE);

}
m[nrl] += 1;
m[nrl] −= ncl ;
for (i = nrl + 1; i ≤ nrh ; i++) m[i] = m[i− 1] + ncol ;
return m;

}
This code is used in section 29.

37. The free simatrix routine releases the memory occupied by the short integer matrix v[nl .. nh], as
allocated by simatrix ().

〈Routine for deallocation of matrices of short integer precision 37 〉 ≡
void free simatrix (short int ∗∗m, long nrl , long nrh , long ncl , long nch)
{
free ((char ∗)(m[nrl] + ncl − 1));
free ((char ∗)(m+ nrl − 1));

}
This code is used in section 29.

32 SUBROUTINES BOXCOUNT §38

38. Routine for displaying help message to standard terminal output.

〈Routine for displaying help message 38 〉 ≡
void showsomehelp(void)
{
fprintf (stderr , "Usage: %s [options]\n", progname);
fprintf (stderr , "Options:\n");
fprintf (stderr , " −h, −−help\n");
fprintf (stderr , " Display this help message and exit clean.\n");
fprintf (stderr , " −v, −−verbose\n");
fprintf (stderr , " Toggle verbose mode on/off.\n");
fprintf (stderr , " −o, −−outputfile <str>\n");
fprintf (stderr , " Specifies the base name of the output files where the program\n");
fprintf (stderr , " is to save the calculated data. If the −−outputfile or −o\n");
fprintf (stderr , " option is followed by ’append’ the estimate for the fractal\n");
fprintf (stderr , " dimension will be appended to the file named <str>.dat, which\n");
fprintf (stderr , " will be created if it does not exist. If the following word\n");
fprintf (stderr , " instead is ‘overwrite’ the file will instead be overwritten.\n");
fprintf (stderr , " −i, −−trajectoryfile\n");
fprintf (stderr , " Specifies the input trajectory of the graph whose fractal\n");
fprintf (stderr , " dimension is to be estimated.\n");
fprintf (stderr , " −w, −−computationwindow llx <num> lly <num> urx <num> ury <num>\n");
fprintf (stderr , " This option explicitly specifies the domain over which the\n");
fprintf (stderr , " box−counting algorithm will be applied, in terms of the\n");
fprintf (stderr , " lower−left and upper−right corners (llx,lly) and (urx,ury),\n");
fprintf (stderr , " respectively. By specifying this option, any automatic\n");
fprintf (stderr , " calculation of computational window will be neglected.\n");
fprintf (stderr , " −m, −−boxmaps\n");
fprintf (stderr , " If this option is present, the program will generate\n");
fprintf (stderr , " MetaPost code for maps of the distribution of boxes.\n");
fprintf (stderr , " In doing so, also the input trajectory is included in\n");
fprintf (stderr , " the graphs. The convention for the naming of the output\n");
fprintf (stderr , " map files is that they are saved as <str>.<N>.dat,\n");
fprintf (stderr , " where <str> is the base filename as specified using the\n");
fprintf (stderr , " −o or −−outputfile option, <N> is the automatically appended\n");
fprintf (stderr , " current level of resolution refinement in the box−counting,\n");
fprintf (stderr , " and where ’.dat’ is the file suffix as automatically appended\n");
fprintf (stderr , " by the program.\n");
fprintf (stderr , " −−graphsize <width in mm> <height in mm>\n");
fprintf (stderr , " If the −m or −−boxmaps option is present at the command line,\n");
fprintf (stderr , " then the −−graphsize option will override the default graph\n");
fprintf (stderr , " size of the generated boxmaps. (Default graph size is 80 mm\n");
fprintf (stderr , " width and 56 mm height.)\n");
fprintf (stderr , " −Nmin, −−minlevel <num>\n");
fprintf (stderr , " Specifies the minimum level Nmin of grid refinement that \n");
fprintf (stderr , " will be used in the evaluation of the estimate of the fractal\n");
fprintf (stderr , " dimension. With this option specified, the coarsest level\n");
fprintf (stderr , " used in the box−counting will be a [(2^Nmin)x(2^Nmin)]−grid\n");
fprintf (stderr , " of boxes.\n");
fprintf (stderr , " −Nmax, −−maxlevel <num>\n");
fprintf (stderr , " This option is similar to the −−minlevel or −Nmin options,\n");
fprintf (stderr , " with the difference that it instead specifies the maximum\n");
fprintf (stderr , " level Nmax of grid refinement that will be used in the\n");

§38 BOXCOUNT SUBROUTINES 33

fprintf (stderr , " evaluation of the estimate of the fractal dimension.\n");
}

This code is used in section 23.

34 SUBROUTINES BOXCOUNT §39

39. The lines intersect (p1x , p1y , q1x , q1y , p2x , p2y , q2x , q2y) routine takes the start and end points of two
line segments, the first between (p1x , p1y) and (q1x , q1y) and the second between (p2x , p2y) and (q2x , q2y),
and returns 1 (‘true’) if they are found to intersect, and 0 (‘false’) otherwise.
For a brief sumnmary of the algorithm behind this routine, consider two line segments in the plane, the

first one between the points p1 and q1 and the second one between p2 and q1. In general, these segments
can be written in parametric forms as r1 = p1 + t1(q1 − p1) and r2 = p2 + t2(q2 − p2) for 0 ≤ t1 ≤ 1 and
0 ≤ t2 ≤ 1. These line segments intersect each other if they for these intervals for the parameters t1 and t2
share a common point, or equivalently if the solutions to

p1 + t1(q1 − p1) = p2 + t2(q2 − p2) ⇔ (q1 − p1)t1 + (p2 − q2)t2 = p2 − p1

both simultaneously satisfy 0 ≤ t1 ≤ 1 and 0 ≤ t2 ≤ 1. This vectorial equation can equivalently be written
in component form as

(q1x − p1x)t1 + (p2x − q2x)t2 = p2x − p1x,

(q1y − p1y)t1 + (p2y − q2y)t2 = p2y − p1y,

which after some straightforward algebra gives the explicit solutions for the parameters t1 and t2 as

t1 =
ed− bf

ad− bc
, t2 =

af − ec

ad− bc
,

where
a ≡ (q1x − p1x), b ≡ (p2x − q2x), c ≡ (q1y − p1y),

d ≡ (p2y − q2y), e ≡ (p2x − p1x), f ≡ (p2x − p1x).

Hence, the two line segments intersect if and only if

0 ≤ ed− bf

ad− bc
≤ 1, and 0 ≤ af − ec

ad− bc
≤ 1.

By observing that their denominators are equal, the evaluation of these quotes involves in total 6 floating-
point multiplications, 2 divisions and 3 subtractions. Notice that whenever ad − bd = 0, the two lines are
parallell and will never intersect, regardless of the values of t1 and t2.

〈Routine for determining whether two lines intersect or not 39 〉 ≡
short int lines intersect (double p1x ,double p1y ,double q1x ,double q1y ,double p2x ,double

p2y ,double q2x ,double q2y)
{
double a, b, c, d, e, f , det , tmp1 , tmp2 ;
short int intersect ;

a = q1x − p1x ;
b = p2x − q2x ;
c = q1y − p1y ;
d = p2y − q2y ;
e = p2x − p1x ;
f = p2y − p1y ;
det = a ∗ d− b ∗ c;
tmp1 = e ∗ d− b ∗ f ;
tmp2 = a ∗ f − e ∗ c;
intersect = 0;
if (det > 0) {
if (((0.0 ≤ tmp1) ∧ (tmp1 ≤ det)) ∧ ((0.0 ≤ tmp2) ∧ (tmp2 ≤ det))) intersect = 1;

}
else if (det < 0) {
if (((det ≤ tmp1) ∧ (tmp1 ≤ 0.0)) ∧ ((det ≤ tmp2) ∧ (tmp2 ≤ 0.0))) intersect = 1;

}
return (intersect);

}
This code is used in section 23.

§40 BOXCOUNT SUBROUTINES 35

40. Routine for determining whether a line and a box intersect or not. The box intersection () routine
simply divides the input box, being characterized by its lower-left and upper-right corners (llx , lly) and
(urx , ury), into the four line segments corresponding to its four edges, followed by calling the routine
lines intersect () to determine if any of these edges intersect the line segment. If an intersection is found,
the box intersection () routine returns 1 (true), otherwise 0 (false).

Input variables:

px , py The coordinates of the first end point p = (px, py) of the line segment.

qx , qy The coordinates of the second end point q = (qx, qy) of the line segment.

llx , lly Coordinates of the lower-left corner of the box.

urx , ury Coordinates of the upper-right corner of the box.

Output variables:

On exit, the routine returns 1 if an intersection is found, otherwise 0 is returned,
in either case the value are returned as integers of short precision.

〈Routine for determining whether a line and a box intersect or not 40 〉 ≡
short int box intersection (double px ,double py ,double qx ,double qy ,double llx ,double

lly ,double urx ,double ury)
{
if (lines intersect (px , py , qx , qy , llx , lly , urx , lly)) return (1); /∗ intersection with bottom edge ∗/
if (lines intersect (px , py , qx , qy , urx , lly , urx , ury)) return (1); /∗ intersection with right edge ∗/
if (lines intersect (px , py , qx , qy , urx , ury , llx , ury)) return (1); /∗ intersection with top edge ∗/
if (lines intersect (px , py , qx , qy , llx , ury , llx , lly)) return (1); /∗ intersection with left edge ∗/
return (0); /∗ this happens only if no edge is intersecting the line segment ∗/

}
This code is used in section 23.

41. Routines for calculation of number of boxes covering the trajectory. There are two almost iden-
tical routines for the calculation of the number of boxes covering the input trajectory at a given level
of subdivision of the box sizes. The first routine, get num covering boxes () simply performs this task
without caring of documenting the box distributions as graphs, or “box maps”, while the second one,
get num covering boxes with boxmaps () also includes the generation of these maps, with output in terms of
METAPOST code.

〈Routines for calculation of number of boxes covering the trajectory 41 〉 ≡
〈Routine for calculation of number of boxes covering the trajectory 42 〉
〈Simplified routine for calculation of number of boxes covering the trajectory 52 〉

This code is used in section 23.

36 SUBROUTINES BOXCOUNT §42

42. Routine for calculation of number of boxes covering the trajectory, also including the generation of
documenting graphs of the box distributions. The get num covering boxes with boxmaps () routine takes a
trajectory as described by a discrete set of coordinates as input, and for a given grid refinement N returns
the number of boxes needed to entirely cover the trajectory. The grid refinement factor N indicates that the
domain of computation is divided into a [2N × 2N]-grid of boxes.
The computational domain in which the box counting is to be performed is explicitly stated by the coordi-

nates of its lower-left and upper-right corners, (globalllx, globallly) and (globalurx, globalury), respectively.
Parts of the trajectory which are outside of this domain are not included in the box-counting. If the entire in-
put trajectory is to be used in the box counting, simply use (global llx , global lly) = (min[x traj],min[y traj])
and (global urx , global ury) = (max[x traj],max[y traj]) for the specification of the computational domain.

Input variables:

mm The total number of coordinates forming the input trajectory, or equivalently the
length of the vectors ∗x traj and ∗y traj .

∗x traj , ∗y traj Vectors of length mm containing the x- and y-coordinates of the input trajectory.

resolution The grid refinement factor N .

global llx , global lly Coordinates of the lower-left corner of the computational domain in which the
box-counting is to be performed.

global urx , global ury Coordinates of the upper-right corner of the computational domain in which the
box-counting is to be performed.

trajectory filename String containing the name of the file containing the input trajectory.

boxgraph filename String which, if non-empty, states the file name to which the map of the spatial
distribution of the covering boxes is to be written, as METAPOST code.

Output variables:

On exit, the routine returns the number of covering boxes as an integer of long
unsigned precision.

Internal variables:

px ,py ,qx ,qy Keeps track of the x- and y-coordinates of the start and end points of line
segments, between p = (px, py) and q = (qx, qy).

〈Routine for calculation of number of boxes covering the trajectory 42 〉 ≡
long unsigned int get num covering boxes with boxmaps (double ∗x traj ,double ∗y traj , long

int mm , int resolution ,double global llx ,double global lly ,double global urx ,double
global ury , char boxgraph filename [],double boxgraph width ,double boxgraph height , char
trajectory filename [])

{
short int ∗∗box ;
long unsigned int i, j, m, nn , istart , jstart , istop , jstop , iincr , jincr , num boxes ;
double ∗x box , ∗y box ; /∗ Keeps track of the lower-left coordinates of the boxes. ∗/
double px , py , qx , qy ;
FILE ∗boxgraph file ;

〈Set up the grid of 2N × 2N boxes covering the entire global window of computation 43 〉
〈Find indices (ia, ja) of the box covering the first coordinate of the trajectory 44 〉
for (m = 1; m ≤ mm − 1; m++) {
〈Find indices (ib, jb) of the box covering the end point of mth trajectory segment 45 〉
〈Scan the mth trajectory segment for intersecting boxes 46 〉

}
〈Open file for output of box distribution graph 47 〉
〈Write the input trajectory to the box distribution graph 48 〉
〈Count the total number of boxes num boxes intersecting the trajectory 49 〉

§42 BOXCOUNT SUBROUTINES 37

〈Write closing blocks the box distribution graph 50 〉
〈Close any open file for output of box distribution graph 51 〉
return (num boxes);

}
This code is used in section 41.

43. Set up the grid of 2N × 2N boxes covering the entire global window of computation. In this block,
the resolution of the grid of boxes is defined. Notice that in many cases, only a certain subset of boxes will
actally intersect the input trajectory. However, we do not á priori know this number of boxes, and in order
to safeguard against the possible danger of running out of allocated memory, with the need for a dynamic
memory allocation depending on the state of computation, a matrix of short integer precision is allocated
covering the entire computational window. In order to keep track of the coordinates of the boxes, two vectors
x box [1 . . . 2N] and y box [1 . . . 2N] are allocated to contain the x- and y-coordinates of the lower-left corners
of the boxes, with the last elements x box [2N] and y box [2N] containing the upper-right corner coordinates
of the upper-right-most box of the global window.

〈Set up the grid of 2N × 2N boxes covering the entire global window of computation 43 〉 ≡
{
nn = 1;
for (i = 1; i ≤ resolution ; i++) nn = 2 ∗ nn ;
box = simatrix (1, nn , 1, nn);
for (i = 1; i ≤ nn ; i++)
for (j = 1; j ≤ nn ; j++) box [i][j] = 0;

x box = dvector (1, nn + 1);
y box = dvector (1, nn + 1);
for (m = 1; m ≤ nn + 1; m++) {
x box [m] = global llx + ((double)(m− 1)) ∗ (global urx − global llx)/((double)(nn));
y box [m] = global lly + ((double)(m− 1)) ∗ (global ury − global lly)/((double)(nn));

}
}

This code is used in section 42.

44. Find indices (ia, ja) of the box covering the first coordinate of the trajectory.

〈Find indices (ia, ja) of the box covering the first coordinate of the trajectory 44 〉 ≡
{
istart = 0;
jstart = 0;
for (m = 1; m ≤ nn ; m++) {
if ((x box [m] ≤ x traj [1]) ∧ (x traj [1] ≤ x box [m+ 1])) istart = m;
if ((y box [m] ≤ y traj [1]) ∧ (y traj [1] ≤ y box [m+ 1])) jstart = m;

}
if ((istart ≡ 0) ∨ (jstart ≡ 0)) {
fprintf (stderr , "%s: Error! Cannot find box indices of 1st coordinate!\n", progname);
fprintf (stderr , "%s: Please check data for input trajetory.\n", progname);
exit (FAILURE);

}
}

This code is used in section 42.

38 SUBROUTINES BOXCOUNT §45

45. Find indices (ib, jb) of the box covering the end point of the mth trajectory segment.

〈Find indices (ib, jb) of the box covering the end point of mth trajectory segment 45 〉 ≡
{
px = x traj [m];
py = y traj [m];
qx = x traj [m+ 1];
qy = y traj [m+ 1];
istop = istart ;
jstop = jstart ;
if (px < qx) {
iincr = 1;
while (x box [istop + 1] < qx) istop++;

}
else {
iincr = −1;
while (x box [istop] > qx) istop−−;

}
if (py < qy) {
jincr = 1;
while (y box [jstop + 1] < qy) jstop++;

}
else {
jincr = −1;
while (y box [jstop] > qy) jstop−−;

}
if (0 ≡ 1) {
fprintf (stdout , "%s: Endpoint box indices: (i=%ld,j=%ld)\n", progname , istop , jstop);

}
}

This code is used in section 42.

46. Scan the mth trajectory segment for intersecting boxes. As the indices of the boxes covering the
start and end points of the mth trajectory segment have been previously determined, one may now use this
information in order to reduce the search for intersecting boxes to the domain as covered by box indices
istart ≤ i ≤ istop and jstart ≤ j ≤ jstop. This way, the computational time needed is greatly reduced as
compared to if the entire window would be scanned for every segment.

〈Scan the mth trajectory segment for intersecting boxes 46 〉 ≡
{
for (i = istart ; i 6= (istop + iincr); i += iincr) {
for (j = jstart ; j 6= (jstop + jincr); j += jincr) {
if (box intersection (px , py , qx , qy , x box [i], y box [j], x box [i+ 1], y box [j + 1])) {
box [i][j] = 1;

}
}

}
istart = istop ;
jstart = jstop ;

}
This code is used in section 42.

§47 BOXCOUNT SUBROUTINES 39

47. Open file for output of box distribution graph. In this block the preamble of the output METAPOST

code is written to file. This preamble contains a macro box(i,j) which simply is a parameter-specific
METAPOST subroutine which is used in order to reduce the final size of the code to be compiled into a graph
over the distribution of covering boxes.

〈Open file for output of box distribution graph 47 〉 ≡
{
if (¬strcmp(boxgraph filename , "")) { /∗ is boxgraph filename an empty string? ∗/
boxgraph file = Λ;

}
else {
if ((boxgraph file = fopen (boxgraph filename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for box graphs!\n", progname , boxgraph filename);
exit (FAILURE);

}
fseek (boxgraph file , 0L, SEEK_SET);
fprintf (boxgraph file , "input graph;\n");
fprintf (boxgraph file , "def box(expr i,j)=\n");
fprintf (boxgraph file , "begingroup\n");
fprintf (boxgraph file , "llx:=%2.8f+(i−1)*%2.8f;\n", global llx , (global urx − global llx)/(nn));
fprintf (boxgraph file , "lly:=%2.8f+(j−1)*%2.8f;\n", global lly , (global ury − global lly)/(nn));
fprintf (boxgraph file , "urx:=%2.8f+(i)*%2.8f;\n", global llx , (global urx − global llx)/(nn));
fprintf (boxgraph file , "ury:=%2.8f+(j)*%2.8f;\n", global lly , (global ury − global lly)/(nn));
fprintf (boxgraph file , "gdraw (llx,lly)−−(urx,lly);\n");
fprintf (boxgraph file , "gdraw (urx,lly)−−(urx,ury);\n");
fprintf (boxgraph file , "gdraw (urx,ury)−−(llx,ury);\n");
fprintf (boxgraph file , "gdraw (llx,ury)−−(llx,lly);\n");
fprintf (boxgraph file , "endgroup\n");
fprintf (boxgraph file , "enddef;\n");
fprintf (boxgraph file , "beginfig(1);\n");
fprintf (boxgraph file , "w:=%2.4fmm; h:=%2.4fmm;\n", boxgraph width , boxgraph height);
fprintf (boxgraph file , "draw begingraph(w,h);\n");
fprintf (boxgraph file , "pickup pencircle scaled .3pt;\n");
fprintf (boxgraph file , "setrange(%2.6f,%2.6f,%2.6f,%2.6f);\n", global llx , global lly , global urx ,

global ury);
}

}
This code is used in section 42.

40 SUBROUTINES BOXCOUNT §48

48. Write the input trajectory to the box distribution graph. Here there are two possible choices for how
the input trajectory is to be included in the box graph.
First, we may use METAPOST to automatically scan and draw the trajectory for us, simply by using a

statment like gdraw input.dat, assuming that the file input.dat contains properly formatted columnwise
data. However, this choice would have two major drawbacks, namely that the generated code would be
dependent on that the original input file always is in place, hence not allowing the METAPOST code to be
exported as a standalone code as such, and also that this would put a limitation on the number of nodes
allowed in the input trajectory, as the graph.mp macro package of METAPOST only accepts roughly 4000
points before it cuts the mapping.
The other choice is to include the input trajectory directly into the generated code, preferrably by chopping

the trajectory into pieces small enough to easily be mapped by METAPOST without reaching a critical limit
of exhaustion. This choice of course significantly increases the file size of the generated code, but this is
a price we will have to accept in order to get stand-alone output. In the BOXCOUNT program, the second
alternative was naturtally chosen, simply because the author is a fan of self-sustaining code which can be
exported for later use.
In this block, the status of the pointer boxgraph file is used to determine whether to write the trajectory

to file or not. If boxgraph file equals to Λ (NULL), then the BOXCOUNT program will not attempt to write
the input trajectory to file.

〈Write the input trajectory to the box distribution graph 48 〉 ≡
{
if (boxgraph file 6= Λ) {
fprintf (boxgraph file , "pickup pencircle scaled .5pt;\n");
i = 0;
for (m = 1; m ≤ mm ; m++) {
if (i ≡ 0) {
if (m ≡ 1) {
fprintf (boxgraph file , "gdraw (%2.4f,%2.4f)", x traj [m], y traj [m]);

}
else if (2 < mm) {
fprintf (boxgraph file , "gdraw (%2.4f,%2.4f)−−(%2.4f,%2.4f)", x traj [m− 1], y traj [m− 1],

x traj [m], y traj [m]);
}

}
else {
fprintf (boxgraph file , "−−(%2.4f,%2.4f)", x traj [m], y traj [m]);

}
i++;
if ((i ≡ 5) ∨ (m ≡ mm)) {
fprintf (boxgraph file , ";\n");
i = 0;

}
}

}
}

This code is used in section 42.

§49 BOXCOUNT SUBROUTINES 41

49. Count the total number of boxes num boxes intersecting the trajectory. Having traversed the entire
trajectory at the current depth of resolution, the only remaining task is to sum up the total number of boxes
needed to cover the entire trajectory. This is simply done by extracting the number of set elements in the
box matrix. Having extracted the total number of boxes, this block also takes care of releasing the memory
occupied by the box matrix, as this memory might be needed for iterations to come in which an even finer
mesh of boxes is used.

〈Count the total number of boxes num boxes intersecting the trajectory 49 〉 ≡
{
num boxes = 0;
for (i = 1; i ≤ nn ; i++) {
for (j = 1; j ≤ nn ; j++) {
if (box [i][j] ≡ 1) {
num boxes++;
if (boxgraph file 6= Λ) {
fprintf (boxgraph file , "box(%ld,%ld);\n", i, j);

}
}

}
}
free simatrix (box , 1, nn , 1, nn);

}
This code is used in section 42.

50. Write closing blocks the box distribution graph. Here follows the specification of tick marking (set as
automatic for the sake of simplicity) and axis labels, just before the closing statements of the METAPOST

code for the graphs of box distributions.

〈Write closing blocks the box distribution graph 50 〉 ≡
{
if (boxgraph file 6= Λ) {
fprintf (boxgraph file , "autogrid(itick bot,itick lft);\n");
fprintf (boxgraph file , "glabel.bot(btex x etex,OUT);\n");
fprintf (boxgraph file , "glabel.lft(btex y etex,OUT);\n");
fprintf (boxgraph file , "endgraph;\n");
fprintf (boxgraph file , "endfig;\n");
fprintf (boxgraph file , "end\n");

}
}

This code is used in section 42.

51. Close any open file for output of box distribution graph.

〈Close any open file for output of box distribution graph 51 〉 ≡
{
if (boxgraph file 6= Λ) {
fprintf (stdout , "%s: MetaPost output box distribution graph written to %s.\n", progname ,

boxgraph filename);
fclose (boxgraph file);

}
}

This code is used in section 42.

42 SUBROUTINES BOXCOUNT §52

52. Routine for calculation of number of boxes covering the trajectory. This routine provides a simplified
interface to the general boxcountng routine get num covering boxes with boxmaps , with the only difference
that no graph of the box distribution over the trajectory is generated. The get num covering boxes () routine
takes a trajectory as described by a discrete set of coordinates as input, and for a given grid refinement N
returns the number of boxes needed to entirely cover the trajectory. The grid refinement factor N indicates
that the domain of computation is divided into a [2N × 2N]-grid of boxes.
The computational domain in which the box counting is to be performed is explicitly stated by the coordi-

nates of its lower-left and upper-right corners, (globalllx, globallly) and (globalurx, globalury), respectively.
Parts of the trajectory which are outside of this domain are not included in the box-counting. If the entire in-
put trajectory is to be used in the box counting, simply use (global llx , global lly) = (min[x traj],min[y traj])
and (global urx , global ury) = (max[x traj],max[y traj]) for the specification of the computational domain.

Input variables:

mm The total number of coordinates forming the input trajectory, or equivalently the
length of the vectors ∗x traj and ∗y traj .

∗x traj , ∗y traj Vectors of length mm containing the x- and y-coordinates of the input trajectory.

resolution The grid refinement factor N .

global llx , global lly Coordinates of the lower-left corner of the computational domain in which the
box-counting is to be performed.

global urx , global ury Coordinates of the upper-right corner of the computational domain in which the
box-counting is to be performed.

Output variables:

On exit, the routine returns the number of covering boxes as an integer of long
unsigned precision.

〈Simplified routine for calculation of number of boxes covering the trajectory 52 〉 ≡
long unsigned int get num covering boxes (double ∗x traj ,double ∗y traj , long int mm , int i,double

global llx ,double global lly ,double global urx ,double global ury)
{
return (get num covering boxes with boxmaps (x traj , y traj ,mm , i, global llx , global lly , global urx ,

global ury , "", 0.0, 0.0, ""));
}

This code is used in section 41.

§53 BOXCOUNT INDEX 43

53. Index.

a: 39.
adev : 11, 19, 24.
APPEND: 9, 11, 13, 16, 20.
argc : 7, 13.
argv : 7, 13, 26.
ave : 11, 19, 20, 24.
b: 39.
box : 42, 43, 46, 49.
box intersection : 3, 40, 46.
boxgraph file : 42, 47, 48, 49, 50, 51.
boxgraph filename : 42, 47, 51.
boxgraph height : 11, 12, 13, 18, 42, 47.
boxgraph width : 11, 12, 13, 18, 42, 47.
boxmap file : 11, 12.
boxmap filename : 11, 18.
c: 39.
ch : 27.
COPYRIGHT: 9, 13.
ctime : 14, 22.
curt : 11, 19, 24.
d: 39.
data : 24.
det : 39.
difftime : 22.
dvector : 15, 19, 30, 43.
e: 39.
EOF: 25.
ep : 24.
exit : 8, 13, 15, 16, 24, 30, 32, 34, 36, 44, 47.
f : 39.
fabs : 24.
FAILURE: 9, 13, 15, 16, 24, 30, 32, 34, 36, 44, 47.
fclose : 15, 21, 51.
filename : 28.
fopen : 15, 16, 47.
fprintf : 8, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24,

30, 32, 34, 36, 38, 44, 45, 47, 48, 49, 50, 51.
frac estimate file : 11, 12, 16, 20, 21.
frac estimate filename : 11, 16.
fracdimen estimates : 11, 19.
free : 31, 33, 35, 37.
free dvector : 19, 31.
free ivector : 33.
free livector : 19, 35.
free simatrix : 37, 49.
fscanf : 15, 25.
fseek : 16, 20, 25, 47.
get num covering boxes : 18, 41, 52.
get num covering boxes with boxmaps : 3, 18,

41, 42, 52.
getc : 25.

global llx : 11, 13, 17, 18, 19, 42, 43, 47, 52.
global lly : 11, 13, 17, 18, 19, 42, 43, 47, 52.
global urx : 11, 13, 17, 18, 19, 42, 43, 47, 52.
global ury : 11, 13, 17, 18, 19, 42, 43, 47, 52.
i: 11, 36, 42, 52.
iincr : 42, 45, 46.
initime : 11, 12, 14, 22.
intersect : 39.
isalnum : 8, 27, 28.
isdigit : 25.
istart : 42, 44, 45, 46.
istop : 42, 45, 46.
ivector : 32.
j: 24, 28, 42.
jincr : 42, 45, 46.
jstart : 42, 44, 45, 46.
jstop : 42, 45, 46.
k: 28.
lines intersect : 39, 40.
livector : 18, 34.
llx : 40.
lly : 40.
log : 19.
m: 36, 37, 42.
main : 7, 11.
make boxmaps : 11, 12, 13, 18, 19.
malloc : 30, 32, 34, 36.
mm : 11, 15, 17, 18, 25, 42, 48, 52.
moment : 3, 19, 24.
nch : 36, 37.
NCHMAX: 9, 11.
ncl : 36, 37.
ncol : 36.
nh : 30, 31, 32, 33, 34, 35, 37.
nl : 30, 31, 32, 33, 34, 35, 37.
nn : 11, 18, 19, 42, 43, 44, 47, 49.
nnmax : 11, 12, 13, 18, 19, 24.
nnmin : 11, 12, 13, 18, 19, 24.
no arg : 11, 13.
now : 11, 22.
nrh : 36, 37.
nrl : 36, 37.
nrow : 36.
num boxes : 11, 18, 19, 42, 49.
num coordinate pairs : 15, 25.
optarg : 10.
output filename : 11, 12, 13, 16, 18.
output mode : 9, 11, 12, 13, 16, 20.
OVERWRITE: 9, 11, 12, 13, 16, 20.
p: 24.
pathcharacter : 27, 28.

44 INDEX BOXCOUNT §53

progname : 10, 13, 14, 15, 16, 17, 18, 19, 22, 24,
26, 36, 38, 44, 45, 47, 51.

px : 40, 42, 45, 46.
py : 40, 42, 45, 46.
p1x : 39.
p1y : 39.
p2x : 39.
p2y : 39.
qx : 40, 42, 45, 46.
qy : 40, 42, 45, 46.
q1x : 39.
q1y : 39.
q2x : 39.
q2y : 39.
resolution : 42, 43, 52.
s: 24.
sdev : 11, 19, 20, 24.
SEEK_END: 16, 20.
SEEK_SET: 16, 20, 25, 47.
showsomehelp : 13, 38.
simatrix : 36, 37, 43.
skew : 11, 19, 20, 24.
sprintf : 16, 18.
sqrt : 24.
sscanf : 13.
stderr : 13, 15, 16, 24, 30, 32, 34, 36, 38, 44, 47.
stdout : 13, 14, 15, 17, 18, 19, 22, 45, 51.
strcmp : 8, 13, 15, 16, 47.
strcpy : 8, 12, 13.
strip away path : 13, 26, 28.
SUCCESS: 7, 9, 13.
time : 12, 22.
tmp : 25.
tmpch : 25.
tmp1 : 39.
tmp2 : 39.
trajectory file : 11, 12, 15, 25.
trajectory filename : 11, 12, 13, 15, 18, 42.
ungetc : 25.
urx : 40.
ury : 40.
user set compwin : 11, 12, 13, 17.
v: 30, 31, 32, 33, 34, 35.
var : 11, 19, 24.
verbose : 11, 12, 13, 15, 17, 18, 19, 22.
VERSION: 9, 13.
x: 11.
x box : 42, 43, 44, 45, 46.
x traj : 11, 15, 17, 18, 25, 42, 44, 45, 48, 52.
y: 11.
y box : 42, 43, 44, 45, 46.
y traj : 11, 15, 17, 18, 25, 42, 44, 45, 48, 52.

BOXCOUNT NAMES OF THE SECTIONS 45

〈Close any open file for output of box distribution graph 51 〉 Used in section 42.

〈Close file for output of logarithmic estimate 21 〉 Used in section 7.

〈Compute the logarithmic estimate of the fractal dimension 19 〉 Used in section 7.

〈Count the total number of boxes num boxes intersecting the trajectory 49 〉 Used in section 42.

〈Declaration of local variables 11 〉 Used in section 7.

〈Display elapsed execution time 22 〉 Used in section 7.

〈Display starting time of program execution 14 〉 Used in section 7.

〈Extract boundary of global window of computation from input trajectory 17 〉 Used in section 7.

〈Find indices (ia, ja) of the box covering the first coordinate of the trajectory 44 〉 Used in section 42.

〈Find indices (ib, jb) of the box covering the end point of mth trajectory segment 45 〉 Used in section 42.

〈Get number of boxes covering the trajectory for all levels of refinement in resolution 18 〉 Used in section 7.

〈Global definitions 9 〉 Used in section 7.

〈Global variables 10 〉 Used in section 7.

〈 Initialize variables 12 〉 Used in section 7.

〈Library inclusions 8 〉 Used in section 7.

〈Load input trajectory from file 15 〉 Used in section 7.

〈Open file for output of box distribution graph 47 〉 Used in section 42.

〈Open file for output of logarithmic estimate 16 〉 Used in section 7.

〈Parse command line for parameters 13 〉 Used in section 7.

〈Routine for allocation of matrices of short integer precision 36 〉 Used in section 29.

〈Routine for allocation of vectors of double precision 30 〉 Used in section 29.

〈Routine for allocation of vectors of integer precision 32, 34 〉 Used in section 29.

〈Routine for calculation of number of boxes covering the trajectory 42 〉 Used in section 41.

〈Routine for checking valid path characters 27 〉 Used in section 26.

〈Routine for computation of average, average deviation and standard deviation 24 〉 Used in section 23.

〈Routine for deallocation of matrices of short integer precision 37 〉 Used in section 29.

〈Routine for deallocation of vectors of double precision 31 〉 Used in section 29.

〈Routine for deallocation of vectors of integer precision 33, 35 〉 Used in section 29.

〈Routine for determining whether a line and a box intersect or not 40 〉 Used in section 23.

〈Routine for determining whether two lines intersect or not 39 〉 Used in section 23.

〈Routine for displaying help message 38 〉 Used in section 23.

〈Routine for obtaining the number of coordinate pairs in a file 25 〉 Used in section 23.

〈Routine for stripping away path string 28 〉 Used in section 26.

〈Routines for calculation of number of boxes covering the trajectory 41 〉 Used in section 23.

〈Routines for memory allocation of vectors and matrices 29 〉 Used in section 23.

〈Routines for removing preceding path of filenames 26 〉 Used in section 23.

〈Save or append the logarithmic estimate to output file 20 〉 Used in section 7.

〈Scan the mth trajectory segment for intersecting boxes 46 〉 Used in section 42.

〈Set up the grid of 2N × 2N boxes covering the entire global window of computation 43 〉 Used in section 42.

〈Simplified routine for calculation of number of boxes covering the trajectory 52 〉 Used in section 41.

〈Subroutines 23 〉 Used in section 7.

〈Write closing blocks the box distribution graph 50 〉 Used in section 42.

〈Write the input trajectory to the box distribution graph 48 〉 Used in section 42.

BOXCOUNT

Section Page
Introduction . 1 1
The CWEB programming language . 2 3
Revision history of the program . 3 4
Compiling the source code . 4 6
Running the program . 5 8
Application example: The Koch fractal . 6 9
The main program . 7 14
Subroutines . 23 27
Index . 53 43

