
§1 MAGBRAGG INTRODUCTION 1

December 24, 2011 at 11:20

1. Introduction.

MagBragg

A simulator of nonlinear magneto-optical Bragg gratings

(Version 1.44 of January 10, 2007)

Written by Fredrik Jonsson

This CWEB† computer program calculates reflection and transmission spectra of nonlinear magneto-optical
Bragg gratings, in a stratified geometry where the material parameters vary only in one Cartesian coordinate.
The MAGBRAGG program also simulates the propagation of the electromagnetic field of an optical wave as
it traverses a magneto-optical Bragg grating, in linear as well as nonlinear optical regimes.
Strictly speaking, in a linear-optical domain a forward algorithm would just as fine as a backward one;

however, for nonlinear optical problems, it often (as in this particular case) turns out that it is easier to
compute the inverse problem, that is to say, to compute the input that corresponds to a certain given output.
This is the case for, for example, optical bistability, where a given input intensity and ellipticity of the input
optical wave for certain configurations correspond to a multiple-valued optical output. This means that we
are not always on safe ground when it comes to the evaluation of output as function of input; meantime it
makes perfectly sense to calculate the single-valued input as function of optical output. This program, in
particular, is formulated in terms of the inverse problem, and hence the input parameters to the program
are partly given in terms of the optical output of the magneto-optical Bragg grating. The algorithm behind
the program was published as F. Jonsson and C. Flytzanis, Physical Review Letters 96, 063902 (2006).

Copyright c© Fredrik Jonsson, 2002–2007. All rights reserved.

† For information on the CWEB programming language by Donald E. Knuth, as well as samples of CWEB

programs, see http://www−cs−faculty.stanford.edu/~ knuth/cweb.html . For general information on
literate programming, see http://www.literateprogramming.com .

2 THE CWEB PROGRAMMING LANGUAGE MAGBRAGG §2

2. The CWEB programming language. For the reader who might not be familiar with the concept
of the CWEB programming language, the following citations hopefully will be useful. For further information,
as well as freeware compilers for compiling CWEB source code, see http://www.literateprogramming.com .

I believe that the time is ripe for significantly better documentation of programs, and that we can

best achieve this by considering programs to be works of literature. Hence, my title: ‘Literate

Programming.’

Let us change our traditional attitude to the construction of programs: Instead of imagining

that our main task is to instruct a computer what to do, let us concentrate rather on explaining

to human beings what we want a computer to do.

The practitioner of literate programming can be regarded as an essayist, whose main concern

is with exposition and excellence of style. Such an author, with thesaurus in hand, chooses

the names of variables carefully and explains what each variable means. He or she strives for a

program that is comprehensible because its concepts have been introduced in an order that is

best for human understanding, using a mixture of formal and informal methods that reinforce

each other.

–Donald Knuth, The CWEB System of Structured Documentation (Addison-Wesley, Massachusetts, 1994)

The philosophy behind CWEB is that an experienced system programmer, who wants to provide

the best possible documentation of his or her software products, needs two things simultaneously:

a language like TEX for formatting, and a language like C for programming. Neither type

of language can provide the best documentation by itself; but when both are appropriately

combined, we obtain a system that is much more useful than either language separately.

The structure of a software program may be thought of as a ‘WEB’ that is made up of many

interconnected pieces. To document such a program we want to explain each individual part of

the web and how it relates to its neighbors. The typographic tools provided by TEX give us an

opportunity to explain the local structure of each part by making that structure visible, and the

programming tools provided by languages like C make it possible for us to specify the algorithms

formally and unambiguously. By combining the two, we can develop a style of programming

that maximizes our ability to perceive the structure of a complex piece of software, and at the

same time the documented programs can be mechanically translated into a working software

system that matches the documentation.

Besides providing a documentation tool, CWEB enhances the C language by providing the

ability to permute pieces of the program text, so that a large system can be understood entirely

in terms of small sections and their local interrelationships. The CTANGLE program is so

named because it takes a given web and moves the sections from their web structure into the

order required by C; the advantage of programming in CWEB is that the algorithms can be

expressed in “untangled” form, with each section explained separately. The CWEAVE program

is so named because it takes a given web and intertwines the TEX and C portions contained in

each section, then it knits the whole fabric into a structured document.

–Donald Knuth, “Literate Programming”, in Literate Programming (CSLI Lecture Notes, Stanford, 1992)

§3 MAGBRAGG THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS 3

3. Theory of nonlinear magneto-optical Bragg gratings. The algorithm used for the simulation
is based on the inverse problem of nonlinear optical gratings, where the transmitted optical field is used
as input to the algorithm, which successively calculates the intra-grating optical fields backwards through
the structure, finally ending up with the corresponding incident field. The analysis is here for the sake of
simplicity restricted to infinite plane waves under assumption of the slowly varying envelope approximation.
The conventions of notation for the discrete layers in the structure of analysis are shown in Fig. 1, in which
N − 1 layers of nonlinear magneto-optical media are separated by their boundaries at z = z1, . . . , zN .

z1

· · ·

dN/2

zN/2

· · ·

zN

Bz
0

z

Ef
0±

Eb
0±

Ef
N±

Figure 1. The geometry of the discretized model of the magneto-optical Bragg grating, in the
Faraday configuration with the static magnetic B0 = Bz

0ez applied in the direction of wave
propagation. The grating consists of N optically homogeneous layers with N +1 discrete interfaces
located at spatial coordinates zk, for k = 1, 2, . . . , N , with the optical properties of each layer
described by the optical susceptibility tensors χee

ij and χeeee
ijkl and their magneto-optical counter-

parts χeem
ijk and χeeeem

ijklm.

4 THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS MAGBRAGG §4

4. Discretization of the problem. In each homogeneous layer zk < z < zk+1, k = 1, 2, . . . , N − 1, the
components of the plane-parallel electromagnetic field E(z, t) = Re[Eω exp(−iωt)] propagate collinearly with
an externally applied static magnetic field B0 = Bz

0ez, and the local constitutive relation for the electric
polarization density P(z, t) = Re[Pω exp(−iωt)] of the medium is [1]

Pω = ε0[χ
ee
xxEω + χeem

xyzEω ×B0

+ (χeeee
xxxx − χeeee

xyyx)(Eω ·E∗
ω)Eω + χeeee

xyyx(Eω ·Eω)E
∗
ω

+ χeeeem
xyyyz(Eω ·E∗

ω)Eω ×B0 + χeeeem
xxxyzEω(Eω · (E∗

ω ×B0))].

(1)

In this expression, the spatial dependence of the fields and susceptibilities is omitted in notation, as is also
any slow temporal variation of the fields; from now on each appearance of a field or susceptibility implicitly
implies evaluation in respective layer of context. In each layer, the envelope of the electromagnetic field
satisfies the autonomous nonlinear wave equation

∂2Eω

∂z2
+ (ω/c)2Eω = −µ0ω

2Pω. (2)

The field is in each layer expressed in a circularly polarized basis e± = (ex ± iey)/
√
2, with forward and

backward traveling modes as a superposition

Eω = [e+E
f
k+

(z) + e−E
f
k−

(z)] exp[iωnk(z − zk)/c]
+ [e∗+E

b
k+

(z) + e∗−E
b
k−

(z)] exp[−iωnk(z − zk)/c],
(3)

where nk = (1 + χee
xx)

1/2 are the linear refractive indices of the layers. We here adopt to the convention of
circularly polarized field components that when looking into the oncoming wave, a left circularly polarized
wave will have its vector of the electric field rotating with counterclockwise motion, while the corresponding
vector of a right circularly polarized field will describe clockwise motion. This convention applies irregardless
of whether we are looking into a forward propagating wave, that is to say looking in the negative z-direction,
or looking into a backward propagating wave, in which case we instead look in the positive z-direction, along
the z-axis. This convention conforms to the classical one as commonly used in optics [5]. Throughout this
program, the notation Ef

k±
(z) is used to denote the left/right circularly polarized components of the forward

traveling component of the electric field in the kth homogeneous layer, while Eb
k±

(z) in an analogous manner

is used to denote the left/right circularly polarized components of the backward traveling component of the
electric field, taking into account the previously described convention for circular polarization states.

§5 MAGBRAGG THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS 5

5. General solutions in the homogeneous layers. By inserting the form of the electric field as given by Eq. (3)
into the wave equation as given by Eq. (1) under the constitutive relation given by Eq. (1) and furthermore
applying the slowly varying envelope approximation, the general solutions for the field components in loss-less
media become [1]

Ef
k±

= Af
k±

exp[i(ω/c)(ηfk±
± gk)(z − zk) + iψf

k±
], (4a)

Eb
k±

= Ab
k±

exp[−i(ω/c)(ηbk±
∓ gk)(z − zk) + iψb

k±
]. (4b)

In these expressions Af,b
k±

and ψf,b
k±

are real constants of integration, determined by the boundary conditions of

the kth layer, and gk = iχeem
xyzB

z
0/(2nk) are the real linear magneto-optical gyration coefficients. In Eqs. (4)

the nonlinear optical and magneto-optical light-matter interactions are described by the field-dependent
parameters

ηfk±
= pk±(A

f 2
k±

+ 2Ab 2
k∓

) + qk±(A
f 2
k∓

+Ab 2
k±

), (5b)

ηbk±
= pk∓(A

b 2
k±

+ 2Af 2
k∓

) + qk∓(A
b 2
k∓

+Af 2
k±

), (5b)

where the coefficients pk± and qk± in the nonlinear susceptibility formalism [3] are expressed as

pk± =
3

8nk
[χeeee

xxxx − χeeee
xyyx ± i(χeeeem

xyyyz − χeeeem
xxxyz)B

z
0], (6b)

qk± =
3

8nk
[χeeee

xxxx + χeeee
xyyx ± i(χeeeem

xyyyz + χeeeem
xxxyz)B

z
0]. (6b)

6. Rotation of the polarization state across the homogeneous layers. The angle of rotation ϑk of the
polarization ellipse of the forward traveling components around the z-axis in each layer is then

ϑk =
ω(z − zk)

2nkc
[−iχeem

xyzB
z
0 + (3/4)χeeee

xyyx(A
f 2
k+
−Af 2

k−
) + (3/8)(χeeee

xxxx − 3χeeee
xyyx)(A

b 2
k+
−Ab 2

k−
)

− (3/4)iχeeeem
xyyyz(A

f 2
k+

+Af 2
k−

)Bz
0 + (3/8)i(χeeeem

xxxyz − 3χeeeem
xyyyz)(A

b 2
k+

+Ab 2
k−

)Bz
0].

(7)

The first term in this expression describes linear Faraday rotation [4] and leads to an effective Zeeman-like
polarization state splitting of the doubly degenerate Bragg resonances. The second and third terms arise from
optical Kerr-effect and lead to photo-induced modification of the ellipse rotation for forward and backward
propagating waves respectively. Referring to the wave equation given by Eqs. (1)–(2) these terms effectively
act as to give photo-induced Stark-like shifts of the split Bragg resonances. Finally the fourth and fifth
terms describe photo-induced magneto-optic Faraday rotation or equivalently photoinduced modification of
the effective Zeeman-like splitting of the Bragg resonances. We note by passing that the third and fifth terms
vanish whenever Kleinman symmetry [3] holds. Moreover, from Eq. (7) one obtains the Verdet coefficient V
of the medium as

V =
ω Im[χeem

xyz]

2nkc
, (8)

describing the Faraday rotation angle per propagation length and static magnetic field intensity.

6 THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS MAGBRAGG §7

7. Boundary conditions at the discrete interfaces. By neglecting any nonlinear effects at the discrete
interfaces between the homogeneous layers, the continuity requirement of the transverse electromagnetic
field across each interface is formulated by the boundary conditions

Ef
k±

(zk) = τk±E
f
k−1±

(zk) exp(iωnk−1dk−1/c) + ρ′k∓
Eb

k∓
(zk), (9a)

Eb
k∓

(zk+1) exp(−iωnkdk/c) = τ ′k+1∓
Eb

k+1∓
(zk+1) + ρk+1±E

f
k±

(zk+1) exp(iωnkdk/c), (9b)

for k = 1, 2, . . . , N − 1, where dk = zk+1 − zk are the layer thicknesses, and where

ρk± =
nk−1 − nk ± (gk−1 − gk)
nk−1 + nk ± (gk−1 + gk)

= −ρ′k∓
, (10a)

τk± =
2(nk−1 ± gk−1)

nk−1 + nk ± (gk−1 + gk)
, (10b)

τ ′k∓
=

2(nk ± gk)
nk−1 + nk ± (gk−1 + gk)

, (10c)

are the reflection and transmission coefficients at the interfaces, with primed coefficients relating to the
backward travelling field components, and with all coefficients including linear magneto-optical effects. The
reflection and transmission coefficients obey the Stokes relation

τk± = (1− ρ2k±
)/τ ′k∓

,

reflecting the polarization state dependence of the boundary conditions at the layer interfaces. This linear
approximation of the boundary conditions can be assumed to hold whenever processes such as the optical
Kerr-effect gives a contribution to the electric polarization density which is small compared to the one given
by the linear polarizability of the medium, or equivalently whenever the nonlinear index of refraction is small
compared to the linear one, which for a linearly polarized optical wave can be formulated as the condition

(3/4)χeeee
xxxx|Ex

ω|2 ≪ 1 + χee
xx.

8. Solving the equations of motion for the inverse problem of transmission. In order to solve Eqs. (4)
and (9) for the relation between incident (k = 0) and transmitted (k = N) fields, we impose the additional
boundary condition that the backward propagating field is zero at the exit end of the grating. By iteratively
using Eqs. (9) and (4) in the order k = N − 1, N − 2, . . . , 1, consecutively solving for lower-indexed electric
fields, we obtain an algorithm for solving the inverse problem, calculating the incident and reflected optical
fields corresponding to a transmitted optical field. This algorithm is explicitly described in Section 10, The
algorithm of computation.

§9 MAGBRAGG THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS 7

9. Interpretation of the solution in terms of the Stokes parameters. The evolution of the optical field is
conveniently expressed in terms of the Stokes parameters [5], which for the input light are taken as

S0 = |Ef
0+ |

2 + |Ef
0− |

2, S1 = 2Re[Ef∗
0+E

f
0−], (11a, b)

S3 = |Ef
0+ |

2 − |Ef
0− |

2, S2 = 2 Im[Ef∗
0+E

f
0−]. (11c, d)

The parameter S0 is a measure of the intensity of the wave, and S3 a measure of the ellipticity of the
polarization state, while the parameters S1 and S2 indicate the amount of power contained in the x- and y-
directions, serving as to determine the orientation of the polarization ellipse. Similarly, the Stokes parameters
for the transmitted light are taken as

W0 = |Ef
N+
|2 + |Ef

N−
|2, W1 = 2Re[Ef∗

N+
Ef

N−
], (12a, b)

W3 = |Ef
N+
|2 − |Ef

N−
|2, W2 = 2 Im[Ef∗

N+
Ef

N−
], (12c, d)

and for the reflected light

V0 = |Eb
0+ |

2 + |Eb
0− |

2, V1 = 2Re[Eb∗
0+E

b
0−], (13a, b)

V3 = |Eb
0+ |

2 − |Eb
0− |

2, V2 = 2 Im[Eb∗
0+E

b
0−]. (13c, d)

In terms of S0 and W0, the incident, transmitted, and reflected intensities in SI units are Iin = ε0cS0/2,
Itr = ε0cW0/2, and Ire = ε0cV0/2, respectively. These respective sets of Stokes parameters can be combined
to form the reduced Stokes vectors

s = (S1, S2, S3)/S0, w = (W1,W2,W3)/W0, v = (V1, V2, V3)/V0,

which map the polarization states of the respective incident, transmitted, and reflected light onto the unitary
Poincaré sphere, with |s| = |w| = |v| = 1, as schematically illustrated in Fig. 2.

S1

S2

S3

x

y (LCP)

x

y (RCP)

x

y (lin. pol.)

x

y(lin. pol.)

x

y(ellip. pol.)

x

y(ellip. pol.)

Figure 2. The unitary Poincaré sphere, on which the normalized Stokes vectors s = (S1, S2, S3)/S0,
w = (W1,W2,W3)/W0, or v = (V1, V2, V3)/V0 provide representations of the polarization state of
the light. The auxiliary figures show the paths traversed by the end point of the electric field vector
as the observer looks into an oncoming wave propagating in the positive z-direction. At the upper
pole of the sphere the light is left circularly polarized (LCP), while it at the lower pole is right

8 THEORY OF NONLINEAR MAGNETO-OPTICAL BRAGG GRATINGS MAGBRAGG §9

circularly polarized (RCP), with the latitude there in between determining the ellipticity of the
polarization state. At the equator, linearly polarized states of the light are represented, and their
orientations are determined by the meridian. The figure was adopted from Ref. [9].

The described algorithm of calculation as described by iteratively using Eqs. (4)–(9) can be applied to a wide
range of magneto-optical gratings, singly or multiply periodic, chirped, or even random without appreciable
complication, by employing a spatial oversampling of the continuous grating profiles in terms of thin layers,
so as to provide an efficient finite difference scheme of computation. Examples of computations performed on
magneto-optical structures of continuous spatial distribution of the optical and magneto-optical parameters
can be found in Refs.[6–8]

§10 MAGBRAGG THE ALGORITHM OF COMPUTATION 9

10. The algorithm of computation. With the theory outlined we are now in position to explicitly
describe the algorithm of computation of the transmission and reflection properties of the grating, as obtained
by iteratively using Eqs. (9) and (4) in the order k = N − 1, N − 2, . . . , 1, consecutively solving for lower-
indexed electric fields. This algorithm follows the one as described in Ref. [2].

Algorithm A (Calculation of amplitude reflection and transmission spectra). The notation of geometry as
used in the algorithm as here described refers to Fig. 1. Let Ef

N±
(zN) be the complex-valued output optical

field from the grating structure, as taken a coordinate z = z+N immediately to the positive of the last interface

zN . The magneto-optical grating structure is described by the material parameters nk, gk, p
(k)
± , and q

(k)
± ,

which all are constant within each homogeneous layer zk ≤ z ≤ zk+1, k = 1, 2, . . . , N − 1. The optical fields
in the respective homogeneous layers are denoted as Ef

k±
(z), for zk ≤ z ≤ zk+1, k = 1, 2, . . . , N − 1.

A1. [Set boundary condition.] Apply the boundary condition Eb
N∓

(zN) = 0, that is to say, that the
backward propagating field is zero after the end of the grating.

A2. [Initialize forward field in layer N − 1.] Using Eq. (9a) for k = N and furthermore applying the
boundary condition in step A1 of the algorithm, set

Ef
N−1±

(zN)← [Ef
N±

(zN)/τN±] exp[−iωnN−1(zN − zN−1)/c],

where τN± is the transmission coefficient as obtained from Eq. (10b).

A3. [Initialize backward field in layer N − 1.] Using Eq. (9b) for k = N − 1 and furthermore applying
the boundary condition from A1 and the field calculated in A2, set

Eb
N−1∓

(zN)← ρ(N)±
Ef

N−1±
(zN) exp[2iωnN−1(zN − zN−1)/c],

where ρ(N)±
is the reflection coefficient as obtained from Eq. (10a).

A4. [Initialize layer counter k.] Set k ← N − 1. This is the counter which we use to keep track of the
layers of the grating structure as this is traversed backwards, from the last layer (k = N−1) towards
the first one (k = 1).

A5. [Calculate propagation constants in the kth layer.] For a lossless medium the magnitudes of the
circularly polarized field components are left invariant under propagation over a homogeneous layer,

|Ef,b
k±

(zk)| = |Ef,b
k±

(zk+1)|;

and hence the field-dependent propagation constants ηfk±
and ηbk±

of the layer z+k ≤ z ≤ z−k+1 are

calculated using Eqs. (5) as

ηfk±
← p

(k)
± [|Ef

k±
(zk+1)|2 + 2|Eb

k∓
(zk+1)|2] + q

(k)
± [|Ef

k∓
(zk+1)|2 + |Eb

k±
(zk+1)|2],

ηbk±
← p

(k)
∓ [|Eb

k±
(zk+1)|2 + 2|Ef

k∓
(zk+1)|2] + q

(k)
∓ [|Eb

k∓
(zk+1)|2 + |Ef

k±
(zk+1)|2].

A6. [Propagate fields over the kth layer.] From the obtained complex-valued fields Ef
k±

(zk+1) and

Eb
k∓

(zk+1), calculate the corresponding fields at the beginning z = z+k of the kth layer by using

Eqs. (4), that is to say, set

Af
k±
← |Ef

k±
(zk+1)|,

Ab
k±
← |Eb

k±
(zk+1)|,

ψf
k±
← arg[Ef

k±
(zk+1)]− ω(ηfk±

± gk)(zk+1 − zk)/c,
ψb
k±
← arg[Eb

k±
(zk+1)] + ω(ηbk±

∓ gk)(zk+1 − zk)/c,

and construct the fields Ef
k±

(zk) and Eb
k±

(zk) (taken immediately to the positive of zk in the kth

layer) as
Ef

k±
(zk)← Af

k±
exp(iψf

k±
),

Eb
k±

(zk)← Ab
k±

exp(iψb
k±

).

10 THE ALGORITHM OF COMPUTATION MAGBRAGG §10

A7. [Check if the whole grating structure is traversed.] If the whole grating is traversed, that is to say
if the layer counter has reached k = 1, then proceed to A11; otherwise continue with A8.

A8. [Propagate forward traveling field components over interface located at z = zk.] From the obtained
complex-valued optical fields Ef

k±
(zk) and Eb

k∓
(zk), use Eq. (9a) to calculate the corresponding

forward propagating field at the negative side of the interface, at z = z−k , that is to say, set

Ef
k−1±

(zk)← [Ef
k±

(zk)− ρ′k∓
Eb

k∓
(zk)] exp[−iωnk−1(zk − zk−1)/c]/τ

(k)
± .

A9. [Propagate backward traveling field components over interface located at z = zk.] From the obtained
complex-valued optical fields Ef

k±
(zk) and Eb

k∓
(zk), use Eq. (9b) to calculate the corresponding

backward propagating field at the negative side of the interface, at z = z−k , that is to say, set

Eb
k−1∓

(zk)← τ
(k)
∓

′Eb
k∓

(zk) exp[iωnk−1(zk − zk−1)/c] + ρ
(k)
± Ef

k−1±
(zk) exp[2iωnk−1(zk − zk−1)/c].

A10. [Decrease layer counter.] Set k ← k − 1 and return to A5.

A11. [Calculate input optical field.] From the obtained forward and backward propagating optical fields
in the first (k = 1) layer of the grating, calculate the corresponding input (forward propagating)
field, that is to say, set

Ef
0±(z1)← [Ef

1±(z1)− ρ
(1)
∓

′Eb
1∓(z1)]/τ

(1)
± .

A12. [Calculate reflected optical field.] From the obtained forward and backward propagating optical
fields in the first (k = 1) layer of the grating, and by using the calculated input optical field of A11,
calculate the reflected optical field at the beginning of the grating, that is to say, set

Eb
0∓(z1)← τ

(1)
∓

′Eb
1∓(z1) + ρ

(1)
± Ef

0±(z1).

A13. [Calculate reflection and transmission coefficients.] Calculate any overall properties of the grating,
such as the (intensity and polarization-state dependent) reflection and transmission

R(ω)←
|Eb

0+(z1)|2 + |Eb
0−(z1)|2

|Ef
0+

(z1)|2 + |Ef
0−

(z1)|2
, T (ω)←

|Ef
N+

(zN)|2 + |Ef
N−

(zN)|2

|Ef
0+

(z1)|2 + |Ef
0−

(z1)|2
,

and terminate the algorithm.

§11 MAGBRAGG THE BUTCHER AND COTTER CONVENTION 11

11. The Butcher and Cotter convention. As a “recipe” for the degeneracy factors in theoretical
nonlinear optics, Butcher and Cotter [10] provide a very useful convention which is well worth holding on
to. For a superposition of monochromatic waves, and by invoking the general property of the intrinsic
permutation symmetry, the monochromatic form of the nth order polarization density can be written as

(P (n)
ωσ

)µ = ε0
∑

α1

· · ·
∑

αn

∑

ω

K(−ωσ;ω1, . . . , ωn)χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn)(Eω1
)α1
· · · (Eωn

)αn
. (14)

The first summations in Eq. (14), over α1, . . . , αn, is simply an explicit way of stating that the Einstein
convention of summation over repeated indices holds. The summation sign

∑

ω, however, serves as a reminder
that the expression that follows is to be summed over all distinct sets of ω1, . . . , ωn. Because of the intrinsic
permutation symmetry, the frequency arguments appearing in Eq. (14) may be written in arbitrary order.
By “all distinct sets of ω1, . . . , ωn”, we here mean that the summation is to be performed, as for example

in the case of optical Kerr-effect, over the single set of nonlinear susceptibilities that contribute to a certain
angular frequency as (−ω;ω, ω,−ω) or (−ω;ω,−ω, ω) or (−ω;−ω, ω, ω). In this example, each of the
combinations are considered as distinct, and it is left as an arbitary choice which one of these sets that
are most convenient to use (this is simply a matter of choosing notation, and does not by any means change
the description of the interaction).
In Eq. (14), the degeneracy factor K is formally described as

K(−ωσ;ω1, . . . , ωn) = 2l+m−np

where
p = the number of distinct permutations of ω1, ω2, . . . , ω1,

n = the order of the nonlinearity,

m = the number of angular frequencies ωk that are zero, and

l =

{
1, if ωσ 6= 0,
0, otherwise.

In other words, m is the number of DC electric fields present, and l = 0 if the nonlinearity we are analyzing
gives a static, or DC, polarization density, such as in the previously (in the spring model) described case of
optical rectification in the presence of second harmonic fields (SHG).
A list of frequently encountered nonlinear phenomena in nonlinear optics, including the degeneracy factors

as conforming to the above convention, is given by Butcher and Cotter [10], Table 2.1.

12. Note on the complex representation of the optical field. Since the observable electric field of the light,
in Butcher and Cotters notation taken as

E(r, t) =
1

2

∑

ωk≥0

[Eωk
exp(−iωkt) +E∗

ωk
exp(iωkt)],

is a real-valued quantity, it follows that negative frequencies in the complex notation should be interpreted
as the complex conjugate of the respective field component, or

E−ωk
= E∗

ωk
.

12 THE BUTCHER AND COTTER CONVENTION MAGBRAGG §13

13. Example of degeneracy factor: The Optical Kerr-effect. Assume a monochromatic optical wave
(containing forward and/or backward propagating components) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R3,

with all spatial variation of the field contained in

Eω(z) = exE
x
ω(z) + eyE

y
ω(z) ∈ C3.

Optical Kerr-effect is in isotropic media described by the third order susceptibility

χ
(3)
µαβγ(−ω;ω, ω,−ω),

with nonzero components of interest for the xy-polarized beam given in Appendix 3.3 of Butcher and Cotters
book as

χ(3)
xxxx = χ(3)

yyyy, χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.
(α, ω)⇀↽ (β, ω)

}

= χ(3)
xyxy = χ(3)

yxyx, χ(3)
xyyx = χ(3)

yxxy,

with
χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx.

The degeneracy factor K(−ω;ω, ω,−ω) is calculated as

K(−ω;ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From this set of nonzero susceptibilities, and using the calculated value of the degeneracy factor in the
convention of Butcher and Cotter, we hence have the third order electric polarization density at ωσ = ω

given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)], with

P(3)
ω =

∑

µ

eµ(P
(3)
ω)µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[

ε0
3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω;ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ωE

x
ωE

x
−ω + χ(3)

xyyxE
y
ωE

y
ωE

x
−ω + χ(3)

xyxyE
y
ωE

x
ωE

y
−ω + χ(3)

xxyyE
x
ωE

y
ωE

y
−ω]

+ ey[χ
(3)
yyyyE

y
ωE

y
ωE

y
−ω + χ(3)

yxxyE
x
ωE

x
ωE

y
−ω + χ(3)

yxyxE
x
ωE

y
ωE

x
−ω + χ(3)

yyxxE
y
ωE

x
ωE

x
−ω]}

= {Make use of E−ω = E∗
ω and relations χ(3)

xxyy = χ(3)
yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ω|Ex

ω|2 + χ(3)
xyyxE

y 2
ω Ex∗

ω + χ(3)
xyxy|Ey

ω|2Ex
ω + χ(3)

xxyyE
x
ω|Ey

ω|2]

+ ey[χ
(3)
xxxxE

y
ω|Ey

ω|2 + χ(3)
xyyxE

x 2
ω Ey∗

ω + χ(3)
xyxy|Ex

ω|2Ey
ω + χ(3)

xxyyE
y
ω|Ex

ω|2]}
= {Make use of intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|Ex
ω|2 + 2χ(3)

xxyy|Ey
ω|2)Ex

ω + (χ(3)
xxxx − 2χ(3)

xxyy)E
y 2
ω Ex∗

ω

ey[(χ
(3)
xxxx|Ey

ω|2 + 2χ(3)
xxyy|Ex

ω|2)Ey
ω + (χ(3)

xxxx − 2χ(3)
xxyy)E

x 2
ω Ey∗

ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polarization density
is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ

(3)
xxxx|Ex

ω|2Ex
ω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|2) contribution to the refractive

index (cf. Butcher and Cotter §6.3.1).

§14 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 13

14. Rigorous theory of wave propagation in isotropic media.

15. The tensor form of the electric polarizability. In the nonlinear susceptibility formalism, with the
real-valued electric field and polarization density of the medium taken according to

E(z, t) = Re[Eω exp(−iωt)], P(z, t) = Re[Pω exp(−iωt)]

respectively, the complex-valued envelope for the polarization density is here given by the expression

Pω =ε0[eµχ
ee
µαE

α
ω + eµχ

eem
µαβE

α
ωB

β
0 + eµKχ

eeee
µαβγE

α
ωE

β
ωE

γ∗
ω + eµKχ

eeeem
µαβγδE

α
ωE

β
ωE

γ∗
ω Bδ

0], (15)

in which the complex conjugated field components are to be associated with negative angular frequencies,
as following from the reality condition E−ω = E∗

ω, and where K = 3/4 is the degeneracy factor as explicitly
included in the Butcher and Cotter convention of nonlinear optical susceptibilities [10], as described in the
previous section. For isotropic media, in particular then homogeneous layers of stacked gratings or elements
of a discretized continuous-profile grating, the tensor elements involved in this expression are for arbitrary
frequencies of the electric and magnetic fields listed in Table 1.

Table 1. Optical and magneto-optical susceptibilities of isotropic nonlinear magneto-optical media, for arbi-
trary angular frequency arguments of the tensors χee

αβ(−ωσ;ωσ), χ
eem
αβγ(−ωσ;ω1, ω2), χ

eeee
αβγδ(−ωσ;ω1, ω2, ω3),

and χeeeem
αβγδǫ(−ωσ;ω1, ω2, ω3, ω4). In the table, M denotes the number of nonzero elements while N denotes

the number of nonzero and independent elements.

Order Source M N Nonzero tensor elements
1st [1] 3 1 χee

xx = χee
yy = χee

zz

2nd [1] 6 1 χeem
xyz = χeem

zxy = χeem
yzx = −χeem

xzy = −χeem
zyx = −χeem

yxz

3rd [2] 21 3 χeeee
xxxx = χeeee

yyyy = χeeee
zzzz = χeeee

xxyy + χeeee
xyxy + χeeee

xyyx,
χeeee
yyzz = χeeee

zzyy = χeeee
zzxx = χeeee

xxzz = χeeee
xxyy = χeeee

yyxx,
χeeee
yzyz = χeeee

zyzy = χeeee
zxzx = χeeee

xzxz = χeeee
xyxy = χeeee

yxyx,
χeeee
yzzy = χeeee

zyyz = χeeee
zxxz = χeeee

xzzx = χeeee
xyyx = χeeee

yxxy

4th [3] 60 6 χeeeem
xxxyz = χeeeem

yyyzx = χeeeem
zzzxy = −χeeeem

xxxzy = −χeeeem
yyyxz = −χeeeem

zzzyx

= χeeeem
xxyzx + χeeeem

xyxzx + χeeeem
yxxzx

χeeeem
xxyxz = χeeeem

yyzyx = χeeeem
zzxzy = −χeeeem

xxzxy = −χeeeem
yyxyz = −χeeeem

zzyzx

= −χeeeem
xxyzx + χeeeem

xyzxx + χeeeem
yxzxx

χeeeem
xyxxz = χeeeem

yzyyx = χeeeem
zxzzy = −χeeeem

xzxxy = −χeeeem
yxyyz = −χeeeem

zyzzx

= −χeeeem
xyxzx − χeeeem

xyzxx + χeeeem
yzxxx

χeeeem
yxxxz = χeeeem

zyyyx = χeeeem
xzzzy = −χeeeem

zxxxy = −χeeeem
xyyyz = −χeeeem

yzzzx

= −χeeeem
yxxzx − χeeeem

yxzxx − χeeeem
yzxxx

χeeeem
xxyzx = χeeeem

yyzxy = χeeeem
zzxyz = −χeeeem

yyxzy = −χeeeem
zzyxz = −χeeeem

xxzyx

χeeeem
xyxzx = χeeeem

yzyxy = χeeeem
zxzyz = −χeeeem

xzxyx = −χeeeem
yxyzy = −χeeeem

zyzxz

χeeeem
yxxzx = χeeeem

zyyxy = χeeeem
xzzyz = −χeeeem

zxxyx = −χeeeem
xyyzy = −χeeeem

yzzxz

χeeeem
xyzxx = χeeeem

yzxyy = χeeeem
zxyzz = −χeeeem

xzyxx = −χeeeem
yxzyy = −χeeeem

zyxzz

χeeeem
yxzxx = χeeeem

zyxyy = χeeeem
xzyzz = −χeeeem

zxyxx = −χeeeem
xyzyy = −χeeeem

yzxzz

χeeeem
yzxxx = χeeeem

zxyyy = χeeeem
xyzzz = −χeeeem

zyxxx = −χeeeem
xzyyy = −χeeeem

yxzzz

14 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §15

Table 2. Optical and magneto-optical susceptibilities of isotropic nonlinear magneto-optical media, corre-
sponding to those as listed in Table 1, but for angular frequency arguments corresponding to the particular
choice of optical Kerr-effect and photo-induced Faraday rotation in presence of a static magnetic field,
χee
αβ(−ω;ω), χeem

αβγ(−ω;ω, 0), χeeee
αβγδ(−ω;ω, ω,−ω), and χeeeem

αβγδǫ(−ω;ω, ω,−ω, 0). As in Table 1, M denotes
the number of nonzero elements while N denotes the number of nonzero and independent elements.

Order Source M N Nonzero tensor elements
1st [1] 3 1 χee

xx = χee
yy = χee

zz

2nd [1] 6 1 χeem
xyz = χeem

zxy = χeem
yzx = −χeem

xzy = −χeem
zyx = −χeem

yxz

3rd [2] 21 3 χeeee
xxxx = χeeee

yyyy = χeeee
zzzz = χeeee

xxyy + χeeee
xyxy + χeeee

xyyx,
χeeee
yyzz = χeeee

zzyy = χeeee
zzxx = χeeee

xxzz = χeeee
xxyy = χeeee

yyxx,
χeeee
yzyz = χeeee

zyzy = χeeee
zxzx = χeeee

xzxz = χeeee
xyxy = χeeee

yxyx,
χeeee
yzzy = χeeee

zyyz = χeeee
zxxz = χeeee

xzzx = χeeee
xyyx = χeeee

yxxy

4th [3] 60 6 χeeeem
xxxyz = χeeeem

yyyzx = χeeeem
zzzxy = −χeeeem

xxxzy = −χeeeem
yyyxz = −χeeeem

zzzyx

= χeeeem
xxyzx + χeeeem

xyxzx + χeeeem
yxxzx

χeeeem
xxyxz = χeeeem

yyzyx = χeeeem
zzxzy = −χeeeem

xxzxy = −χeeeem
yyxyz = −χeeeem

zzyzx

= −χeeeem
xxyzx + χeeeem

xyzxx + χeeeem
yxzxx

χeeeem
xyxxz = χeeeem

yzyyx = χeeeem
zxzzy = −χeeeem

xzxxy = −χeeeem
yxyyz = −χeeeem

zyzzx

= −χeeeem
xyxzx − χeeeem

xyzxx + χeeeem
yzxxx

χeeeem
yxxxz = χeeeem

zyyyx = χeeeem
xzzzy = −χeeeem

zxxxy = −χeeeem
xyyyz = −χeeeem

yzzzx

= −χeeeem
yxxzx − χeeeem

yxzxx − χeeeem
yzxxx

χeeeem
xxyzx = χeeeem

yyzxy = χeeeem
zzxyz = −χeeeem

yyxzy = −χeeeem
zzyxz = −χeeeem

xxzyx

χeeeem
xyxzx = χeeeem

yzyxy = χeeeem
zxzyz = −χeeeem

xzxyx = −χeeeem
yxyzy = −χeeeem

zyzxz

χeeeem
yxxzx = χeeeem

zyyxy = χeeeem
xzzyz = −χeeeem

zxxyx = −χeeeem
xyyzy = −χeeeem

yzzxz

χeeeem
xyzxx = χeeeem

yzxyy = χeeeem
zxyzz = −χeeeem

xzyxx = −χeeeem
yxzyy = −χeeeem

zyxzz

χeeeem
yxzxx = χeeeem

zyxyy = χeeeem
xzyzz = −χeeeem

zxyxx = −χeeeem
xyzyy = −χeeeem

yzxzz

χeeeem
yzxxx = χeeeem

zxyyy = χeeeem
xyzzz = −χeeeem

zyxxx = −χeeeem
xzyyy = −χeeeem

yxzzz

16. The vectorial form of the polarization density. By expanding the tensorial form of the polarization
denisty as given by Eq. (15) and using the nonzero elements of the susceptibility tensors as given in Table 2,
one after some straightforward algebra obtains the polarization density of the medium in a vectorial form as

Pω =ε0[χ
ee
xxEω + χeem

xyzEω ×B0 +
3
4 (χ

eeee
xxxx − χeeee

xyyx)(Eω ·E∗
ω)Eω + 3

4χ
eeee
xyyx(Eω ·Eω)E

∗
ω

+ 3
4χ

eeeem
xyyyz(Eω ·E∗

ω)Eω ×B0 +
3
4χ

eeeem
xxxyzEω(Eω · (E∗

ω ×B0))],
(16)

where the degeneracy factor K = 3/4 was explicitly stated with its numerical value.

§17 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 15

17. The Polarization density in the Faraday configuration. In the Faraday configuration [1], the optical
field propagates collinearly with an externally applied static magnetic field B0. Taking the direction of
propagation as the z-axis in a Cartesian coordinate system (ex, ey, ez) and furthermore assuming the infinite
plane wave approximation to hold for the transverse profile of the waves, the probem of wave propagation
becomes a one-dimensional nonlinear system.
As a convention for circular polarization states, we employ the circularly polarized basis vectors

e± = (ex ± iey)/
√
2,

which possesses the properties

e± × ez = ±ie±, e∗± · e± = 1, e∗± · e∓ = 0.

In the circularly polarized basis, the fields are hence taken as B0 = ezB
z
0 and Eω = e+E

+
ω + e−E

−
ω , in

which the electric field is the total one, including any forward or backward traveling components. As this is
inserted into Eq. (2), the electric polarization density of the medium hence becomes

e∗± ·Pω = ε0{(χee
xx ± iχeem

xyzB
z
0)E

±
ω + 3

4 [(χ
eeee
xxxx − χeeee

xyyx)|E±
ω |2 + (χeeee

xxxx + χeeee
xyyx)|E∓

ω |2]E±
ω

± 3
4 [i(χ

eeeem
xyyyz − χeeeem

xxxyz)B
z
0 |E±

ω |2 + i(χeeeem
xyyyz + χeeeem

xxxyz)B
z
0 |E∓

ω |2]E±
ω }

From now on, the susceptibility tensor elements will for the sake of simplicity in notation be incorporated
into the index of refraction n = (1+ χee

xx)
1/2, the gyration coefficient γ = χeem

xyzB
z
0 , and the nonlinear optical

and magneto-optical parameters p± and q±, defined as

p± =
3

8n±

[(χeeee
xxxx − χeeee

xyyx)± i(χeeeem
xyyyz − χeeeem

xxxyz)B
z
0], (2a)

q± =
3

8n±

[(χeeee
xxxx + χeeee

xyyx)± i(χeeeem
xyyyz + χeeeem

xxxyz)B
z
0], (2b)

where n± = (n2 ± γ)1/2 are the effective refractive indices for the circularly polarized components of the
light, to give the polarization density in Eq. (1) in the simpler form

e∗± ·Pω = ε0[n
2
± − 1 + 2n±(p±|E±

ω |2 + q±|E∓
ω |2)]E±

ω . (5)

The reason for includingthe refractive index in the particular scaling of the nonlinear coefficients as apparing
in p± and q± will become obvious as the analysis proceeds with the wave equation. As the polarization
density given by Eq. (5) is inserted into the wave equation for the electric field inside the medium, one
obtains the equation of motion

∂2E±
ω

∂z2
+
ω2n2

±

c2
E±

ω + 2n±

ω2

c2
(p±|E±

ω |2 + q±|E∓
ω |2)E±

ω = 0. (5)

This equation determines the spatial evolution of the total electromagnetic field, which may be composed
of forward as well as backward traveling components of arbitrary polarization state. The task that now lies
ahead is the separation of these components so as to form a system which provides the basis for further
analytical investigation.

16 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §18

18. Separation into forward and traveling components. It may from Eq. (5) be noticed that in the absence
of the nonlinear source terms, the general solutions for the left and right circularly polarized components of
a forward traveling wave become

E+
ω = Ef

+ exp(in+ωz/c), E−
ω = Ef

− exp(in−ωz/c),

respectively, where Ef
+ and Ef

− are constants determined by the initial conditions at some arbitrary point
along the direction of propagation. Meanwhile, the solution for the left/right circularly polarized components
of a backward traveling wave becomes

E+
ω = Eb

+ exp(in−ωz/c), E−
ω = Eb

− exp(in+ωz/c),

in which we here emphasize the change of effective refractive indices as experienced compared to the forward
traveling component. This change is due to the fact that a backward traveling wave will experience the
applied static magnetic field as pointing in the opposite direction as compared to the forward traveling wave,
and hence the birefringence experienced from the Faraday effect will be different in sign. For a linearly
polarized wave, this is manifested in that the polarization state of the backward traveling wave will rotate
in opposite direction around the axis pointing in the direction of propagation, as compared to the forward
traveling wave. Hence, by employing a separation according to

Eω = e+E
f
+ exp(in+ωz/c) + e−E

f
− exp(in−ωz/c)

+ e∗+E
b
+ exp(−in−ωz/c) + e∗−E

b
− exp(−in+ωz/c),

(6)

or equivalently in the scalar form

E±
ω = Ef

± exp(in±ωz/c) + Eb
∓ exp(−in±ωz/c), (6)

the wave equation for the envelopes Ef
± and Eb

±, which generally are dependent on the coordinate z, naturally
relaxes towards the solution to the linear wave propagation problem, with Ef

± and Eb
± becoming constants

whenever the nonlinear terms may be neglected. In addition, due to the separation of the linear phase
evolution in this one may also expect the field envelopes to be slowly varying functions of the spatial
coordinate z under any reasonable nonlinear effects.
By inserting Eq. (6) into The polarization density given in Eq. (5), the wave equation (0) takes the form

{∂2Ef
±

∂z2
+ 2ik±

∂Ef
±

∂z
+ 2

ω2n±

c2
[p±(|Ef

±|2 + 2|Eb
∓|2) + q±(|Ef

∓|2 + |Eb
±|2)]Ef

±

}

exp(ik±z)

+
{∂2Eb

∓

∂z2
− 2ik±

∂Eb
∓

∂z
+ 2

ω2n±

c2
[p±(|Eb

∓|2 + 2|Ef
±|2) + q±(|Eb

±|2 + |Ef
∓|2)]Eb

∓

}

exp(−ik±z)

+ 2
ω2n±

c2
p±[E

f 2
± Eb∗

∓ exp(3ik±z) + Eb 2
∓ Ef∗

± exp(−3ik±z)]

+ 2
ω2n±

c2
q±[E

f
±E

f
∓E

b∗
± exp(i(k± + 2k∓)z) + Eb

∓E
b
±E

f∗
∓ exp(−i(k± + 2k∓)z)]

+ 2
ω2n±

c2
q±[E

f
∓E

b
∓E

b∗
± exp(i(2k∓ − k±)z) + Eb

±E
f
±E

f∗
∓ exp(−i(2k∓ − k±)z)] = 0,

(7)

where the notation k± ≡ ωn±/c was introduced for the sake of algebraic simplicity. In this equation, it
may me noticed that the linear terms of the polarization density have been eliminated, due to the particular
choice of separation of variables according to Eq. (6). However, in this form the wave propagation problem
is extremely complex in its analysis, and in order to proceed, two general approximations may be employed
without loosing much of generality. These are the slowly varying envelope approximation and the method
of projecting out spatially phase mismatched terms. The slowly varying envelope approximation simply

§18 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 17

assumes that the second-order spatial derivative of the field envelope is much smaller in magnitude than the
first-order derivative multiplied by the wavevector, or in terms of the here employed variables,

∣
∣
∣
∂2Ef

±

∂z2

∣
∣
∣≪ 2k±

∣
∣
∣
∂Ef

±

∂z

∣
∣
∣,

∣
∣
∣
∂2Eb

∓

∂z2

∣
∣
∣≪ 2k±

∣
∣
∣
∂Eb

∓

∂z

∣
∣
∣.

By applying this approximation to Eq. (7), one obtains the slightly simpler system of equations

{∂Ef
±

∂z
− iω

c
[p±(|Ef

±|2 + 2|Eb
∓|2) + q±(|Ef

∓|2 + |Eb
±|2)]Ef

±

}

exp(ik±z)

−
{∂Eb

∓

∂z
+ i

ω

c
[p±(|Eb

∓|2 + 2|Ef
±|2) + q±(|Eb

±|2 + |Ef
∓|2)]Eb

∓

}

exp(−ik±z)

− iω
c
p±[E

f 2
± Eb∗

∓ exp(3ik±z) + Eb 2
∓ Ef∗

± exp(−3ik±z)]

− iω
c
q±[E

f
±E

f
∓E

b∗
± exp(i(k± + 2k∓)z) + Eb

∓E
b
±E

f∗
∓ exp(−i(k± + 2k∓)z)]

− iω
c
q±[E

f
∓E

b
∓E

b∗
± exp(i(2k∓ − k±)z) + Eb

±E
f
±E

f∗
∓ exp(−i(2k∓ − k±)z)] = 0.

(8)

Next step is now to project out terms which are closely phase matched, and in particular then the terms
related to the envelopes of the forward and backward traveling components. This is for the forward traveling
parts done by multiplying Eq. (8) by exp(−ik±z) and average the resulting equation over a few spatial
periods, assuming slowly varying field envelopes. In performing this averaging, essentially two levels of
approximation may be applied: Either we keep also terms which are closely phase matched, that is to say
the term involving the exponent exp(i(2k∓−k±)z), or we may assume that also this terms is averaged out for
a sufficiently strong Faraday effect. This is in many cases a fully adequate approximation, in particular since
the main contribution to effects such as the ellipse rotation, optcal Kerr-effect and photo-induced Faraday
effect anyway are dominated by the terms involving the absolute magnitude of the fields. In the rigorous
theory as here developed, however, these terms are kept for the time being, so as to fully encounter for any
effects introduced by these. This method of projecting out the forward components is analogously applied
to the backward traveling ones, but for this case by instead multiplying the equation by exp(ik±z) prior to
the averaging. The resulting system of coupled equations for the envelopes of the forward and backward
traveling components of the field envelopes yield

∂Ef
±

∂z
= i

ω

c
{[p±(|Ef

±|2 + 2|Eb
∓|2) + q±(|Ef

∓|2 + |Eb
±|2)]Ef

± + q±E
f
∓E

b
∓E

b∗
± exp(∓iηz)} = 0, (9a)

∂Eb
∓

∂z
= −iω

c
{[p±(|Eb

∓|2 + 2|Ef
±|2) + q±(|Eb

±|2 + |Ef
∓|2)]Eb

∓ + q±E
b
±E

f
±E

f∗
∓ exp(±iηz)} = 0, (9b)

where the notation η ≡ 2(k+ − k−) was introduced.

18 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §19

19. Separation of amplitude and phase of the field envelopes. In order to proceed with Eqs. (7), it is
convenient to separate the wave propagation into parts affecting the phase and amplitude of the forward
and backward traveling field envelopes. In order to do so, the amplitude and phase of the field envelopes are
taken according to

Ef,b
± (z) = Af,b

± (z) exp(iψf,b
± (z)),

where Af,b
± (z) ≡ |Ef,b

± (z)| are the amplitudes and ψf,b
± (z) the corresponding phases of Ef,b

± (z). This ansatz
leads to Eqs. (7) assuming the form

(∂Af
±

∂z
+ iAf

±

∂ψf
±

∂z

)

exp(iψf
±) = i

ω

c
{[p±(Af 2

± + 2Ab 2
∓) + q±(A

f 2
∓ +Ab 2

±)]Af
± exp(iψf

±)

+ q±A
f
∓A

b
∓A

b
± exp(∓iηz + iψf

∓ + iψb
∓ − iψb

±)}, (11a)
(∂Ab

∓

∂z
+ iAb

∓

∂ψb
∓

∂z

)

exp(iψb
∓) = −i

ω

c
{[p±(Ab 2

∓ + 2Af 2
±) + q±(A

b 2
± +Af 2

∓)]Ab
∓ exp(iψb

∓)

+ q±A
b
±A

f
±A

f
∓ exp(±iηz + iψb

± + iψf
± − iψf

∓)}, (11b)

or equivalently

∂Af
±

∂z
+ iAf

±

∂ψf
±

∂z
= i

ω

c
{[p±(Af 2

± + 2Ab 2
∓) + q±(A

f 2
∓ +Ab 2

±)]Af
± + q±A

f
∓A

b
∓A

b
± exp(∓iψ)}, (12a)

∂Ab
∓

∂z
+ iAb

∓

∂ψb
∓

∂z
= −iω

c
{[p±(Ab 2

∓ + 2Af 2
±) + q±(A

b 2
± +Af 2

∓)]Ab
∓ + q±A

b
±A

f
±A

f
∓ exp(±iψ)}, (12b)

where the phase differences between the fields were incorporated into the single variable ψ = ψ(z), defined
as

ψ(z) ≡ ηz + ψf
+(z)− ψf

−(z) + ψb
+(z)− ψb

−(z). (13)

By multiplying Eqs. (12) by respective amplitudes Af
± and Ab

∓, extracting the real parts of the left and right
hand sides of Eqs. (12), and assumin a nonresonant medium in which p± and q± are real-valued quantities,
one obtains the amplitude equations

∂Af 2
±

∂z
=± 2(ω/c)q±A

f
+A

f
−A

b
+A

b
− sin(ψ), (14a)

∂Ab 2
∓

∂z
=± 2(ω/c)q±A

f
+A

f
−A

b
+A

b
− sin(ψ), (14b)

while the analogous extraction of the imaginary parts instead provides the phase equations

Af 2
±

∂ψf
±

∂z
=
ω

c
[p±(A

f 2
± + 2Ab 2

∓) + q±(A
f 2
∓ +Ab 2

±)]Af 2
± +

ω

c
q±A

f
+A

f
−A

b
+A

b
− cos(ψ(z)), (15a)

Ab 2
∓

∂ψb
∓

∂z
=− ω

c
[p±(A

b 2
∓ + 2Af 2

±) + q±(A
b 2
± +Af 2

∓)]Ab 2
∓ −

ω

c
q±A

f
+A

f
−A

b
+A

b
− cos(ψ(z)). (15b)

The inclusion of the phases as differences into the single variable ψ(z) is not, as one at a first glance might
think, only just a matter of convenient and compact notation. In fact, by differentiating ψ(z) with respect
to z and using the phase evolution according to Eqs. (10), it actually turns out that the individual phases of
the components of the optical wave can be eliminated in favour of the single variable ψ(z), hence providing
an effective reduction of the dimensionality of the problem, as will be shown in the following sections.

§20 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 19

20. Invariants of motion. As a short side track to the analysis, before proceeding with actually solving
the derived equations of motion for the amplitudes and phases of the field components, we will now consider
a few important points regarding conserved quantities. These are important in the final stage when we
separate out one single differentail equation for one single field variable from the so far complex and coupled
system. From the spatial evolution of the amplitudes as given in Eqs. (14), one finds that the magnitudes
of the envelopes obey the invariants of motion

∂

∂z
(Af 2

+ −Ab 2
−) = 0,

∂

∂z
(Af 2

− −Ab 2
+) = 0. (16)

Similarly, one also finds that the respective forward and backward traveling circularly polarized components
obey the invariants of motion

∂

∂z
(q−A

f 2
+ + q+A

f 2
−) = 0,

∂

∂z
(q+A

b 2
+ + q−A

b 2
−) = 0. (17)

The invariants of motion given by Eqs. (16) and (17) can hence be summarized as

Af 2
+ −Ab 2

− = const. ≡ C+/q−, (18a)

Af 2
− −Ab 2

+ = const. ≡ C−/q+, (18b)

q−A
f 2
+ + q+A

f 2
− = const. ≡ If , (18c)

q+A
b 2
+ + q−A

b 2
− = const. ≡ Ib. (18d)

The reason for this particular choice of the form of the constants of motion, with C+ and C− scaled to be in
units of q− and q+, respectively, is motivated later on by simplifying the notation when it comes to choosing
a normalized form for the equations of motion in the final stage of their solving. As Eqs. (18) imply that the
invariants of motion for the general, z-dependent envelopes can be formulated as the linear algebraic system

q− 0 0 −q−
0 q+ −q+ 0
q− q+ 0 0
0 0 q+ q−

Af 2
+ (z)

Af 2
− (z)

Ab 2
+ (z)

Ab 2
− (z)

 =

C+

C−

If
Ib

 , (19)

one may be tempted to draw the conclusion that all envelopes are constant with respect to the spatial coordi-
nate z. However, this is a wrong conclusion, as one easily can verify that the system (18) is underdetermined,
with a zero determinant of the system matrix, as appearing in Eq. (19).

20 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §21

21. Elimination of absolute phase dependence. In order to reduce the algebraic complexity of Eqs. (14)
and (15), which is necessary in order proceed with the analytical theory of their evolution, we will now
eliminate the absolute phases of the fields in favour of the single variable ψ = ψ(z), which describes the
phase difference between the four field components Ef

+, E
f
−, E

b
+ and Eb

−. This will reduce the dimension of
of the problem from the original eight variables present in Eqs. (14) and (15), down to a total of five coupled
variables and equations. By differentiating the variable ψ(z) with respect to z and using Eqs. (10) one finds

∂ψ

∂z
= η +

∂ψf
+

∂z
− ∂ψf

−

∂z
+
∂ψb

+

∂z
− ∂ψb

−

∂z

= η +
ω

c
[p+(A

f 2
+ + 2Ab 2

−) + q+(A
f 2
− +Ab 2

+)] +
ω

c
q+
Af

−A
b
−A

b
+

Af
+

cos(ψ)

− ω

c
[p−(A

f 2
− + 2Ab 2

+) + q−(A
f 2
+ +Ab 2

−)]− ω

c
q−
Af

+A
b
+A

b
−

Af
−

cos(ψ)

− ω

c
[p−(A

b 2
+ + 2Af 2

−) + q−(A
b 2
− +Af 2

+)]− ω

c
q−
Ab

−A
f
−A

f
+

Ab
+

cos(ψ)

+
ω

c
[p+(A

b 2
− + 2Af 2

+) + q+(A
b 2
+ +Af 2

−)] +
ω

c
q+
Ab

+A
f
+A

f
−

Ab
−

cos(ψ)

= η +
ω

c
[3p+(A

f 2
+ + Ab 2

−) + 2q+(A
f 2
− +Ab 2

+)]− ω

c
[3p−(A

f 2
− +Ab 2

+) + 2q−(A
f 2
+ +Ab 2

−)]

+
ω

c

(

q+
Af

−A
b
−A

b
+

Af
+

− q−
Af

+A
b
+A

b
−

Af
−

− q−
Ab

−A
f
−A

f
+

Ab
+

+ q+
Ab

+A
f
+A

f
−

Ab
−

)

cos(ψ)

=
{
Use Eqs. (14) in substituting for terms in the second line

}

= η +
ω

c
[(3p+ − 2q−)(A

f 2
+ +Ab 2

−)− (3p− − 2q+)(A
f 2
− +Ab 2

+)]

+
(1

Af
+

∂Af
+

∂z
+

1

Af
−

∂Af
−

∂z
+

1

Ab
+

∂Ab
+

∂z
+

1

Ab
−

∂Ab
−

∂z

)cos(ψ)

sin(ψ)

=

{

Use
1

Af b
±

∂Af,b
±

∂z
=

∂

∂z
lnAf,b

± and cos(ψ)/ sin(ψ) ≡ cot(ψ)

}

= η +
ω

c
[(3p+ − 2q−)(A

f 2
+ +Ab 2

−)− (3p− − 2q+)(A
f 2
− +Ab 2

+)]

+
(∂

∂z
lnAf

+ +
∂

∂z
lnAf

− +
∂

∂z
lnAb

+ +
∂

∂z
lnAb

−

)

cot(ψ)

= η +
ω

c
[(3p+ − 2q−)(A

f 2
+ +Ab 2

−)− (3p− − 2q+)(A
f 2
− +Ab 2

+)] + cot(ψ)
∂

∂z
ln(Af

+A
f
−A

b
+A

b
−).

Thus, by returning to the amplitude evolution described by Eqs. (14) and by defining the short-hand notation

r± ≡ (3p± − 2q∓)

for the coefficients of the nonlinear terms, the evolution of the optical field can be summarized with the
considerably simplified system of coupled and nonlinear differential equations

∂Af 2
±

∂z
= ±2(ω/c)q±Af

+A
f
−A

b
+A

b
− sin(ψ), (19a)

∂Ab 2
∓

∂z
= ±2(ω/c)q±Af

+A
f
−A

b
+A

b
− sin(ψ), (19b)

∂ψ

∂z
= η + (ω/c)[r+(A

f 2
+ +Ab 2

−)− r−(Af 2
− +Ab 2

+)] + cot(ψ)
∂

∂z
ln(Af

+A
f
−A

b
+A

b
−). (19c)

Notice that the absolute phases of the field components now have been entirely eliminated in favour of
ψ = ψ(z), as was the goal outset in the beginning of this section. The next step in the analysis is to
eliminate also the relative phase from the equations of motion, so as to provide an autonomous system only
involving the field amplitudes Af

± and Ab
±.

§22 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 21

22. Elimination of the relative phase. The equations of motion given by Eqs. (19) are considerably reduced
in their algebraic complexity as compared to the original ones, as given by Eqs. (1). However, there are still
some simplifications which can be applied to further reduce the complexity, in particular then the elimination
of the phase altogether, as will now be shown.
The trick to apply is to first multiply the left and right hand sides of Eq. (19c) with Af

+A
f
−A

b
+A

b
− sin(ψ),

expanding the spatial derivative on the right hand side, and rearrange the terms to obtain

cos(ψ)
∂

∂z
(Af

+A
f
−A

b
+A

b
−)−Af

+A
f
−A

b
+A

b
− sin(ψ)

∂ψ

∂z

= −{η + (ω/c)[r+(A
f 2
+ +Ab 2

−)− r−(Af 2
− +Ab 2

+)]}Af
+A

f
−A

b
+A

b
− sin(ψ).

(20)

In this equation, we immediately find that the left hand side is the spatial derivative of Af
+A

f
−A

b
+A

b
− cos(ψ),

so we may start looking for rewriting the right hand side as a spatial derivative as well, in which case we
would end up with an integrable equation. In this search for a form of the right hand side which could be
integrated, the appearance of the factor Af

+A
f
−A

b
+A

b
− sin(ψ) leads to using either of Eqs. (19a) or (19b) to

express this term as a derivative of the amplitudes instead, hopefully leading to the right hand side as a
polynomial form which is easily integrated. Thus, Eq. (20) can be rewritten as

∂

∂z
(Af

+A
f
−A

b
+A

b
− cos(ψ))

= −{η + (ω/c)[r+(A
f 2
+ +Ab 2

−)− r−(Af 2
− +Ab 2

+)]}Af
+A

f
−A

b
+A

b
− sin(ψ).

=
{
Use Eq. (19a) in substituting for the factor Af

+A
f
−A

b
+A

b
− sin(ψ)

}

= −{η + (ω/c)[r+(A
f 2
+ +Ab 2

−)− r−(Af 2
− +Ab 2

+)]} 1

2(ω/c)q+

∂Af 2
+

∂z

=
{
Eliminate backward traveling components using Eqs. (18a) and (18b)

}

= − 1

q+

{ η

2(ω/c)
+ 1

2 [r+(2A
f 2
+ − C+/q−)− r−(2Af 2

− − C−/q+)]
}∂Af 2

+

∂z

=
{
Eliminate Af 2

− using Eq. (18c)
}

= − 1

q+

{ η

2(ω/c)
+ 1

2 [r+(2q−A
f 2
+ − C+)/q− − r−(2(If − q−Af 2

+)− C−)/q+]
}∂Af 2

+

∂z

=
{
Collect terms in powers of Af 2

+

}

= − 1

q+

{(η

2(ω/c)
− (q+r+C+ − q−r−C−)

2q+q−
− r−If

q+

)

+
(q+r+ + q−r−)

q+q−
q−A

f 2
+

}∂Af 2
+

∂z

=
{
Identify as differential of polynomial of form p(Af 2

+)
}

= − 1

q+

∂

∂z

{(η

2(ω/c)
− (q+r+C+ − q−r−C−)

2q+q−
− r−If

q+

)

Af 2
+ +

(q+r+ + q−r−)

2q+q−
q−A

f 4
+

}

(21)

which directly integrates to yield

q+A
f
+A

f
−A

b
+A

b
− cos(ψ) = Γ/q− −

[(η

2(ω/c)
− (q+r+C+ − q−r−C−)

2q+q−
− r−If

q+

)

Af 2
+ +

(q+r+ + q−r−)

2q+q−
q−A

f 4
+

]

= Γ/q− − aAf 2
+ − bq−Af 4

+ ,
(22)

where Γ is a yet undetermined constant of integration, to be determined later on by the boundary conditions
of the homogeneous domain, and where the short-hand notations

a ≡ η

2(ω/c)
− (q+r+C+ − q−r−C−)

2q+q−
− r−If

q+
, b ≡ (q+r+ + q−r−)

2q+q−
, (24)

22 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §22

were introduced. The relative phase ψ is now from Eq. (22) determined in terms of the field amplitudes, and
in order to get an expression for the factor sin(ψ) which appears in the amplitude equations, for example in
Eq. (19a), we may employ the trigonometric identity sin2(ψ)+ cos2(ψ) = 1, from which we obtain Eq. (19a)
as

∂Af 2
+

∂z
= (−1)k2(ω/c)[q2+Af 2

+ Af 2
− Ab 2

+ Ab 2
− − (Γ/q− − aAf 2

+ − bq−Af 4
+)2]1/2, (23)

where the undeterminacy of the sign of sin(ψ) = ±(1−cos2(ψ))1/2 is included in the factor (−1)k, with k being
a yet undetermined integer. In this nonlinear differential equation, also the relative phase ψ is eliminated,
and the mathematical dimension of the problem at hand has been reduced from in total eight variables to
the present four ones given by the linearly independent field amplitudes. It may be observed that in deriving
Eq. (23), the invariants of motion given by Eqs. (18) had to be employed, in order to be able to write the
right-hand side as a total derivative. As the invariants of motion equally well still can be employed to further
reduce the dimensionality of the problem by eliminating Af 2

− , Ab 2
+ and Ab 2

− , we can at this stage easily see
the outline to finally formulate the problem of wave propagation as one single differential equation involving
only the single variable Af 2

+ .

23. Elimination of redundant field amplitudes. In this section, the dimensionality of the wave propagation
problem is finally reduced to yield a one-dimensional problem in one single variable Af 2

+ . By eliminating
the field amplitudes Af 2

− , Ab 2
+ and Ab 2

− with the use of the invariants of motion as given by Eqs. (18), one
obtains Eq. (23) as

∂Af 2
+

∂z
= (−1)k2(ω/c)[q2+Af 2

+ q−1
+ (If − q−Af 2

+)
︸ ︷︷ ︸

=Af 2
− (z)

q−1
+ (If − q−Af 2

+ − C−)
︸ ︷︷ ︸

=Ab 2
+

(z)

q−1
− (q−A

f 2
+ − C+)

︸ ︷︷ ︸

=Ab 2
− (z)

− q−2
− (Γ− aq−Af 2

+ − bq2−Af 4
+)2]1/2

= (−1)k2(ω/c)
q−

[q−A
f 2
+ (If − q−Af 2

+)(If − q−Af 2
+ − C−)(q−A

f 2
+ − C+)− (Γ− aq−Af 2

+ − bq2−Af 4
+)2]1/2.

(24)
Hence, by taking the normalized and dimensionless field amplitude variable v and the normalized and
dimensionless coordinate ζ according to

v ≡ q−Af 2
+ , ζ ≡ 2ωz/c, (25)

we obtain the normalized equation for the amplitude of the left circularly polarized forward traveling field
component as

∂v

∂ζ
= (−1)k[v(If − v)(If − v − C−)(v − C+)− (Γ− av − bv2)2]1/2. (26)

This nonlinear ordinary differential equation is now well suited for numerical evaluation, or even analytical
as will be shown next. It should however be noticed that the field amplitudes Af

+, A
f
−, A

b
+, and A

b
− are all

involved implicitly through the invariants of motion If , C+, and C−, as given by Eqs. (18), and also via the
introduced short-hand notations a and b as introduced in Eq. (24); also the relative phase ψ of the fields
evaluated at some coordinate ζ0 enters as one parameter to encounter for, via the integration constant Γ
and Eq. (22).

§24 MAGBRAGG RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA 23

24. Formulation in terms of an elliptic integral. The nonlinear ordinary differential equation (26) for
v = v(ζ) can be formulated as

∂v

∂ζ
= (−1)k[f(v)]1/2, (27)

where
f(v) ≡ a4v4 + 4a3v

3 + 6a2v
2 + 4a1v + a0

is a quartic polynomial in the normalized field amplitudes v, and in which the coefficients aj , for j = 1, . . . , 4,
are explicitly given in terms of the previously used algebraic symbols as

a0 = −Γ2, (28a)

a1 = (2Γa− I2f C+ + IfC+C−)/4, (28b)

a2 = (I2f + 2Γb+ 2IfC+ − IfC− − a2 − C+C−)/6, (28c)

a3 = (−2If + C− − C− − 2ab)/4, (28d)

a4 = 1− b2. (28e)

The solution v(ζ) is then from Eq. (27) given by the integral equation

∫ v(ζ)

v(ζ0)

dx

(a4x4 + 4a3x3 + 6a2x2 + 4a1x+ a0)1/2
= (−1)k

∫ ζ

ζ0

dζ = (−1)k(ζ − ζ0), (29)

where v0 ≡ v(ζ0) with ζ0 being an arbitrarily chosen reference coordinate ζ0 along the axis of wave
propagation.
The left-hand side of Eq. (29) constitutes an elliptic integral which principally can be reduced to the

Legendre-Jacobi normal form by means of suitable homographic substitutions and the use of Jacobian elliptic
functions. This implies the solving for the roots of the characteristic polynomial equation f(v) = 0 which,
however perfectly well analytically solvable, though is an algebraically very cumbersome task.
A more convenient method is to instead employ notation and method of solution by Weierstrass, which

turns out to considerably simplify the algebra, and which provides an analytic solution which can be
computed analytically in terms of the Weierstrass elliptic function [11–13] ℘(ζ) = ℘(ζ; g2, g3) with the
quartic invariants g2 and g3 as

g2 ≡ a0a4 − 4a1a3 + 3a22, g3 ≡

∣
∣
∣
∣
∣
∣

a0 a1 a2
a1 a2 a3
a2 a3 a4

∣
∣
∣
∣
∣
∣

= a0a2a4 + 2a1a2a3 − a32 − a0a23 − a21a4.

The solution v(ζ) of Eq. (29) is then explicitly given as

v(ζ) = v0 +

√

f(v0)℘
′(ζ) + 1

2f
′(v0)[℘(ζ)− 1

24f
′′(v0)] +

1
24f(v0)f

′′′(v0)

2[℘(ζ)− 1
24f

′′(v0)]2 − 1
48f(v0)f

(iv)(v0)
. (30)

That the solution given by Eq. (30) actually is a solution to the differential equation (27) can easily be
verified using the MapleV code

restart:

f:=a[0]*v^4+4*a[1]*v^3+6*a[2]*v^2+4*a[3]*v+a[4];

g[2]:=a[0]*a[4]-4*a[1]*a[3]+3*a[2]^2;

g[3]:=a[0]*a[2]*a[4]+2*a[1]*a[2]*a[3]-a[2]^3-a[0]*a[3]^2-a[1]^2*a[4];

df[0]:=eval(f,v=v0):

df[1]:=eval(diff(f,v$1),v=v0):

df[2]:=eval(diff(f,v$2),v=v0):

df[3]:=eval(diff(f,v$3),v=v0):

24 RIGOROUS THEORY OF WAVE PROPAGATION IN ISOTROPIC MEDIA MAGBRAGG §24

df[4]:=eval(diff(f,v$4),v=v0):

tmp[1]:=sqrt(df[0])*WeierstrassPPrime(z,g[2],g[3]):

tmp[2]:=(1/2)*df[1]*(WeierstrassP(z,g[2],g[3])-(1/24)*df[2]):

tmp[3]:=(1/24)*df[0]*df[3]:

tmp[4]:=2*(WeierstrassP(z,g[2],g[3])-(1/24)*df[2])^2:

tmp[5]:=(1/48)*df[0]*df[4]:

v:=v0+(tmp[1]+tmp[2]+tmp[3])/(tmp[4]-tmp[5]):

p:=a[0]*v^4+4*a[1]*v^3+6*a[2]*v^2+4*a[3]*v+a[4]:

testfunc:=(diff(v,z))^2-p:

testfunc:=simplify(testfunc);

25. Boundary conditions.

§26 MAGBRAGG REVISION HISTORY OF THE PROGRAM 25

26. Revision history of the program.

2002-10-28 [v.1.0] <fredrik.jonsson@proximion.com>
First properly working version of the MAGBRAGG program, written in plain (ANSI-
conformant) C.

2002-11-15 [v.1.1] <fredrik.jonsson@proximion.com>
Minor changes to the blocks of the program for the generation of reflection spectra,
providing data for a talk at the MRS 2002 Fall Meeting [F. Jonsson and C. Flytzanis,
Theoretical model for magneto-optical Bragg gratings, Talk O4.7 presented at the 2002
Materials Research Society (MRS) Fall Meeting, Boston, United States (December 2–6,
2002)].

2003-02-18 [v.1.2] <fredrik.jonsson@proximion.com>
Modified the part of the program that writes the spatial optical field distribution along
the grating to file, so that both forward and backward left and right circularly polarized
components of the propagating fields are written to file (using the −−fieldevolution

command line option).

2003-02-25 [v.1.3] <fredrik.jonsson@proximion.com>
Transferred all source code of theMAGBRAGG program from C to CWEB. For information
on the CWEB programming language, see http://www.literateprogramming.com .

2003-04-18 [v.1.4] <fredrik.jonsson@proximion.com>
Added the −−modifylayer option, enabling the user to manually modify an arbitrary
layer of the grating structure in linear as well as nonlinear optical parameters, or
modifying the layer thickness.

2003-04-28 [v.1.5] <fredrik.jonsson@proximion.com>
Added the −−intensityevolution option.

2003-07-15 [v.1.6] <hakkasberra@hotmail.com>
Added some points in the documentation regarding the philosophy behind creating two-
dimensional plots from topological graphs of Stokes-parameter hypersurfaces.

2003-07-22 [v.1.7] <hakkasberra@hotmail.com>
Added the possibility of specifiying whether the electrical field displacement or Stokes
parameters should be written to file, when saving the intra-grating field distribution via
the −−fieldevolution command line option.

2003-07-23 [v.1.8] <hakkasberra@hotmail.com>
Changed the reference phase of the calculated, final intra-grating optical field, so that the
main axis of the polarization ellipse always is directed along the x-axis (corresponding
to S2 = 0 in a Stokes parameter description) at the beginning of the grating, at z = 0.
(The naturally appearing reference phase is relative the output field, at the end of the
grating, since z = L is the spatial starting point in the inverse algorithm.)

2003-08-04 [v.1.9] <hakkasberra@hotmail.com>
Added the −−normalize_length_to_um option, which causes the program to write
spatial distances in micrometers instead of meters. Useful for pre-normalizing data prior
to importing it into programs for making graphs of the spatial intra-grating distribution
of intensity or polarization state. Also added the −−normalize_intensity option,
which causes the program to write the intensity-related Stoke parameter S0(z) as the
quote with the input intensity instead, as S0(z)/S0(0).

2003-08-07 [v.1.10] <hakkasberra@hotmail.com>
Added the −−intensityspectrumfile option, to save a regular intensity spectrum
as function of wavelength, and not only just the complex reflection and transmis-
sion spectra. Using this option, the character string following it will be used as the
base filename for the generated intensity reflection spectrum, which will be named

26 REVISION HISTORY OF THE PROGRAM MAGBRAGG §26

〈basename〉.irsp.dat, and the intensity transmission spectrum, which will be named
〈basename〉.itsp.dat. The format of these files are simply that the first column is the
vacuum wavelength in nanometers, and the second column the reflection or transmission
coefficients. In addition to these two files, an additional file 〈basename〉.chec.dat will
be generated, containing the sum of the respective reflection and transmission coeffi-
cients. Ideally, the second column of this file should be identically one; any deviation
from this is an artefact of the limited numerical precision in the simulation, and can be
taken as a measure on the correctness of the obtained data.

2003-08-19 [v.1.11] <hakkasberra@hotmail.com>
Added the −−normalize_ellipticity option, which switch the program to writing
the normalized ellipticity S3/S0 (with a numerical value between −1 and 1) instead
of the third Stokes parameter, whenever it is to be written to disk. Also added the
−−scale_stokesparams 〈a〉 option, which at the stage of saving the Stokes parameters
to disk divides the sets (S0, S1, S2, S3), (W0,W1,W2,W3), and (V0, V1, V2, V3) by the
scalefactor 〈a〉 prior to writing them to disk. This is typically a good thing to do if the
program that is to post-analyze the generated data has a poor way of handling large
numbers (typically larger than ∼ 1014 for the squared amplitudes of the components of
the electric field).

2003-08-20 [v.1.12] <hakkasberra@hotmail.com>
Modified the Makefile to provide a somewhat more intelligent check on which files that
need to be updated on compilation. Also updated section five, Compiling the source

code, of the documentation of the program.

2003-08-23 [v.1.13] <hakkasberra@hotmail.com>
Added a check in the blocks that saves the full grating structure to file, so that the
program now fully recognizes the −−normalize_length_to_um option.

2003-10-06 [v.1.14] <jonsson@uni−wuppertal.de>
Added a few clarifying paragraphs on the conventions used for the magneto-optical
material parameters and the exact conventions for the circularly polarized modes as
here used.

2003-12-10 [v.1.15] <jonsson@uni−wuppertal.de>
Added a few clarifying paragraphs on the scaling of the Stokes parameters that are
written to file after the finished calculations. As a default, and as a matter of convention
in electrodynamics in SI units, all Stokes parameters are given in V2/m2, through their
definition. For example, the incident field (which is calculated by the program in this
inverse formulation of the problem) is expressed in terms of the Stokes parameters as

S0 = |Ef
0+ |

2 + |Ef
0− |

2, S1 = 2Re[Ef∗
0+E

f
0−],

S3 = |Ef
0+ |

2 − |Ef
0− |

2, S2 = 2 Im[Ef∗
0+E

f
0−].

However, the direct interpretation of these quantities in terms of squared Volts per
square metres is sometimes somewhat inconvenient; therefore, those parameters can be
scaled to give an interpretation of the intensity (in regular SI units measured in Watts
per square metres), as S′

k = (ε0c/2)Sk, or explicitly

S′
0 = (ε0c/2)[|Ef

0+ |
2 + |Ef

0− |
2], S′

1 = (ε0c/2)2Re[E
f∗
0+E

f
0−],

S′
3 = (ε0c/2)[|Ef

0+ |
2 − |Ef

0− |
2], S′

2 = (ε0c/2)2 Im[Ef∗
0+E

f
0−].

In this representation, S′
0 is now identical to the incident intensity Iin [W/m2]. In order

to have those scaled Stokes parameters S′
k written to file, rather than the default ones,

one convenient possibility is to use the previously added −−scale_stokesparams option,

§26 MAGBRAGG REVISION HISTORY OF THE PROGRAM 27

to include −−scale_stokesparams 1.327209e−3 at the command line when invoking
the program. This numerical value of the scaling is obtained from

ε0c/2 = (8.854187817 . . .× 10−12 F/m)× (2.99792458× 108 m/s)/2

≈ 1.327209× 10−3 F/s.

In regular SI units as here used, the physical dimension of the quantity ε0c/2 is [(A ·
s)/(V · m)] · [m/s] = [A/V], so the physical dimension of (ε0c/2)Sk is hence [A/V] ·
[V2/m2] = [W/m2], as expected for an intensity measure (power per unit area in the
plane orthogonal to the direction of wave propagation).

2003-12-10 [v.1.16] <jonsson@uni−wuppertal.de>
Added the −−intensityinfo option, in order to track down the maximum optical
intensity that is present inside (or outside) the magneto-optical grating structure.

2003-12-17 [v.1.17] <jonsson@uni−wuppertal.de>
Added the −−trmtraject option, in order to check the polarization state evolution of
the transmitted light for a varying incident intensity, keeping the incident polarization
state fixed. Typically, we use two-dimensional interpolation to get the trajectory of
the transmitted polarization state as function of the incident light (the incident light
typically being of a fixed polarization state, with a varying intensity). This trajectory
can now be used as input to the MAGBRAGG program in the invserse formulation of
the problem, for the generation of Poincaré maps corresponding to cases with constant
incident polarization states and varying input intensity.

2004-03-10 [v.1.18] <jonsson@uni−wuppertal.de>
Last week in Stockholm I bought a new computer, a silvery Apple Macintosh Power-
book G4 running Apple OSX (10.3 Panther). As I recompiled the CWEB source for the
MAGBRAGG program, still using the GNU C-compiler (GCC) for the executable file, I got
complaints about the definition of the cabs routine as shadowing a previously defined
function. This is a complaint that I never previously had with GCC under CYGWIN and
Windows 2000, and it is obvious that the math.h header file of GCC has been slightly
changed lately. However, after globally changing the routine name from cabs to cdabs

(which anyway is better since the new name also indicates that it takes complex num-
bers in double precision as input), there were no more complaints, and the program now
executes as expected in the OSX environment.

2004-04-23 [v.1.19] <jonsson@uni−wuppertal.de>
Fixed a bug in the initialization of chirped modulation of magneto-optical parameters,
for which the last z-coordinate of the discretized grating, zN , never was set.

2004-04-24 [v.1.20] <jonsson@uni−wuppertal.de>
Added the −−gyroperturb option in order to provide a way of locally manipulating
and perturbing the gyration constant of the medium. This option was added since
I got this idea that a perturbation introduced by external means, for example via a
current carrying wire oriented orthogonally to the direction of propagation of light in
the Faraday configuration, could be used for opening up a window in the transmission
window of a chirped Bragg grating. The syntax of the −−gyroperturb option is simply
−−gyroperturb 〈zp〉 〈ap〉 〈wp〉, where 〈zp〉 is the centre position, 〈ap〉 is the zero-to-
peak amplitude of change of the gyration constant g, and 〈wp〉 is the corresponding full
width half maximum of the perturbation.

2004-04-26 [v.1.21] <jonsson@uni−wuppertal.de>
Added the −−stokesspectrum option, so that it is possible to generate full Poincaré
maps of the spectral properties of a magneto-optical Bragg grating. However, after
having introduced this option, I get the following message from CWEAVE:

28 REVISION HISTORY OF THE PROGRAM MAGBRAGG §26

cweave magbragg

This is CWEAVE, Version 3.64 (Web2C 7.5.2)

*1*3*4*5*6*7*36*37*38*55*60*67*68*70

Writing the output file...*1*3*4*5*6*7*36*37*38*55*60

! Sorry, scrap/token/text capacity exceeded. (l. 2912)

sprintf(outfilename w1,"%s%s",

outfilename,".w1.dat");

(That was a fatal error, my friend.)

make: *** [magbragg.tex] Error 1

The C code generated by CTANGLE compiles and executes perfectly, but obviously some-
thing is obstructing CWEAVE to properly generating the TEX code for the documenta-
tion. Most annoying.

2004-05-07 [v.1.22] <fredrik.jonsson@nmrc.ie>
Added the −−displaysurrmedia, which toggles if the program should write also the
surrounding media to saved grating profiles or not. This is useful if one wish to just
generate some part of a grating for a figure illustrating a particular refractive index
distribution, cut exactly to the specified spatial interval of interest. As default, the
MAGBRAGG program writes also the surrounding media to the ends of the grating file,
so by using this option only once at the command line forces the program to cut the
grating file exactly to the specified spatial interval. The annoying compilation error
from 2004-04-26 is still present, preventing me from generating the documentation.

2004-07-03 [v.1.23] <fredrik.jonsson@nmrc.ie>
I am in Germany for laboratory work in Wuppertal during two weeks, and this free
Saturday morning I decided to once and for all trace down and eliminate the annoying
parsing error that CWEAVE produces. (I am currently writing this entry at Starbucks in
Cologne, being the only café in town with a non-smoking policy . . .) Since this particular
error seemed to stem from the block related to parsing of the command line options, and
since this block anyway by now has grown over any reasonable size, I decided split it
into several smaller blocks instead. Having done so, CWEAVE immediately accepted the
CWEB source and extracted the TEX source, which subsequently were compiled without
any errors. It thus seems like I on April 26th must have passed some upper size limit on
the source allowed in one single CWEB block. Not that I really expected such a built-in
constraint in CWEB, but in some sense I can agree on that by putting some hard upper
limit, one will at least force the programmer to structure the code into smaller blocks,
probably increasing the readability. As of today, the CWEB source for the MAGBRAGG

program (source file magbragg.w) comprises 171418 bytes and 4138 lines of code. The
size of the compiled executable is 70340 bytes, and the PostScript documentation is
808345 bytes (92 pages of A4 output in 10pt).

2004-11-14 [v.1.24] <fredrik.jonsson@nmrc.ie>
Added the −−apodize option, to be able to get rid of some unwanted Gibbs oscillations
at the ends of the reflectance band of spectra generated for chirped gratings, aimed to
generate nice spectra for a talk to be presented at the MRS 2004 Fall Meeting [F. Jonsson
and C. Flytzanis, Artificially Induced Perturbations in Chirped Magneto-Optical Bragg

Gratings, in Magneto-Optical Materials for Photonics and Recording, Eds. Koji Ando,
W. Challener, R. Gambino and M. Levy, Mater. Res. Soc. Symp. Proc. 834, J1.8
(Materials Research Society, Warrendale, 2005)]. Also added the −−phasejump option
(short form −j) to allow specification of a discrete phase jump to appear in sinusoidal
or chirped grating structures. In adding these options, the same error as of April 26th
appeared again, in the block related to the parsing of command line options. Since this
block has again grown over any reasonably readable size, I hence started to split this

§26 MAGBRAGG REVISION HISTORY OF THE PROGRAM 29

block into smaller CWEB sub-blocks, after which there were no further complaints from
CWEAVE in extracting the TEX documentation of the program. As of today, the CWEB

source for the MAGBRAGG program (source file magbragg.w) comprises 179296 bytes
and 4312 lines of code. The size of the compiled executable is 74436 bytes, and the
PostScript documentation is 835671 bytes (95 pages of A4 output in 10pt).

2004-12-04 [v.1.25] <fredrik.jonsson@nmrc.ie>
Changed the way of output of Stokes parameters to file. Previously, the program
always opened files with extensions .s0.dat,. . ., .s3.dat for output of the incident Sk

parameters (and similarly for the reflected and transmitted Stokes parameters Vk and
Wk), irregardless of the number of sampling points in intensity and ellipticity. However,
for sampling of spectral characteristics we most often only encounter a simulation
performed at one single intensity and ellipticity (Mi = 1 and Me = 1), which means
that, previously, twelve empty files were opened and closed for each simulation. This
is now changed so that the program only opens those files for output in “topological”
mode of operation, in which Mi ≥ 2 and Me ≥ 2. Compiling the C code with GCC

then caused some novel complaints using the −−pedantic option, regarding the risk
of using the associated file pointers uninitialized. That this complaint appear at all
might be an indicator that GCC is not that strict in checking the logical state of the
program in which the file pointers were to be used, since I verified that there was no
reason whatsoever for the warnings. The “quick-and-dirty” solution to get rid of the
annoying and non-justified warnings was to simply initialize all file pointers to NULL at
the beginning of the program. Also started to write a separate section on all command
line options currently supported by MAGBRAGG. The documentation has now for quite
a while been in urgent need of such a section, since the number of options have grown
quite a lot during the last year. As a start, the documentation for the −−grating,
−−phasejump, and −−apodize options was updated. As of today, the CWEB source for
the MAGBRAGG program (source file magbragg.w) comprises 192945 bytes and 4611
lines of code. The size of the compiled executable is 74436 bytes, and the PostScript
documentation is 873757 bytes (102 pages of A4 output in 10pt).

2004-12-05 [v.1.26] <fredrik.jonsson@nmrc.ie>
Added the feature that the program now uses time.h to extrapolate what the estimated
time of arrival (ETA) of the simulation is. This is useful for predicting the total
simulation time for large numbers of sampled layers, such in long sinusoidal or chirped
gratings. The estimation is simply done via linear extrapolation as

tETA = t0 +
t− t0

{%finished} × 100,

to produce run-time messages of the form

Program execution started Sun Dec 5 20:55:27 2004

--

...10 percent finished... ETA: Sun Dec 5 21:44:57 2004

...20 percent finished... ETA: Sun Dec 5 21:42:12 2004

...30 percent finished... ETA: Sun Dec 5 21:41:17 2004

...40 percent finished... ETA: Sun Dec 5 21:40:49 2004

...50 percent finished... ETA: Sun Dec 5 21:40:33 2004

...60 percent finished... ETA: Sun Dec 5 21:40:20 2004

...70 percent finished... ETA: Sun Dec 5 21:40:12 2004

...80 percent finished... ETA: Sun Dec 5 21:40:05 2004

...90 percent finished... ETA: Sun Dec 5 21:40:01 2004

...done. Elapsed execution time: 2644 s

--

30 REVISION HISTORY OF THE PROGRAM MAGBRAGG §26

Program execution closed Sun Dec 5 21:39:31 2004

Also wrote documentation on command-line specifications of chirped gratings, and
cleaned up the declarations of local variables somewhat. As of today, the CWEB source
for the MAGBRAGG program (source file magbragg.w) comprises 203691 bytes and 4830
lines of code. The size of the compiled executable is 74532 bytes, and the PostScript
documentation is 898974 bytes (105 pages of A4 output in 10pt).

2004-12-11 [v.1.27] <fredrik.jonsson@nmrc.ie>
Added two schematic figures to the documentation on the discretization of the grating.

2005-04-22 [v.1.28] <fj@phys.soton.ac.uk>
Removed an unused block in the code for saving spectra to file, after having thoroughly
checked that it would have no affect on the backward compatibility of the program to
earlier data generated. Also increased the numerical precision of the data written to
file for the intensity reflection and transmission spectra, which now yields %−10.8f in
floating point conversion as conforming to ANSI C.

2005-04-28 [v.1.29] <fj@phys.soton.ac.uk>
Added four blocks of text in the documentation of command line options.

2005-06-08 [v.1.30] <fj@phys.soton.ac.uk>
In Stockholm for two months. Added the standard C library function fflush () for
enforcement in writing of all buffered calculated data to file. This in order to be able
to follow the process of calculation more direct by file inspection. When executing
MAGBRAGG under the new distribution of CYGWIN for Windows XP, the block for the
displaying of status of calculation suddenly behaves odd, showing estimated execution
times well below any reasonable estimated time of arrival, and also going well beyond
the maximum 100 percent in relative execution progress. This will have to be checked,
and has never previously appeared when compiling with GCC, neither under Apple
OSX(BSD), nor under CYGWIN.

2005-08-10 [v.1.31] <fj@phys.soton.ac.uk>
Back in Southampton again with my family after a hot summer. Wrote the code for
the strip away path () routine originally for the POINCARE program and immediately
decided to adopt the code also into the MAGBRAGG program in order to finally solve
the problem with long path strings that appear in the program name string whenever
poincare is called with an explicit path specified at the command line. The call to
the strip away path () routine is located in the beginning of the block for command
line parsing. As of today, the CWEB source for the MAGBRAGG program (source file
magbragg.w) comprises 219666 bytes and 5172 lines of code. The size of the compiled
(CYGWIN) executable is 96647 bytes, and the PostScript documentation is 967813 bytes
(112 pages of A4 output in 10pt).

2005-08-11 [v.1.32] <fj@phys.soton.ac.uk>
Cleaned up the blocks for displaying on-screen help messages. Wrote two routines hl ()
and fhl () to assist a coherent style in displaying help on command-line options.

2005-08-19 [v.1.33] <fj@phys.soton.ac.uk>
Fixed two remaining bugs in the hl () and fhl (), in which GCC under OSX this evening
complained that long unsigned integers were sent to standard terminal output using the
regular integer conversion of standard C. This warning did not show as the code was
compiled with GCC under CYGWIN, hence there seem to be some discrepancy between
different ports of the otherwise reliable compilator.

2005-09-15 [v.1.34] <fj@phys.soton.ac.uk>
Corrected an error in the documentation of the options concerning specifications of
chirped sinusoidal grating structures. The chirp parameter is now properly defined and
described by example.

§26 MAGBRAGG REVISION HISTORY OF THE PROGRAM 31

2005-12-31 [v.1.35] <fj@phys.soton.ac.uk>
The theoretical description of the algorithm behind the solving of the inverse problem
in the MAGBRAGG program is included in an article which today has been accepted for
publication in Physical Review Letters. Added a section on the theoretical basis for the
algorithm behind the program, deriving the algorithm from the electromagnetic wave
equation in a manner similar to the description which soon will appear in the published
article.

2006-01-22 [v.1.36] <fj@phys.soton.ac.uk>
Added a section on the Butcher and Cotter convention of degeneracy factors in nonlinear
optics, picked from my Lecture Notes on Nonlinear Optics from the course I gave at
the Royal Institute of Technology in 2003. Also edited the section on the theoretical
basis for the algorithm of calculation and added a figure describing the representation
of the polarization state on the Poincaré sphere. As of today, the CWEB source for the
MAGBRAGG program (source file magbragg.w) comprises 252108 bytes and 5937 lines
of code. The size of the compiled (OSX) executable is 78808 bytes, and the PostScript
documentation is 1651977 bytes (122 pages of A4 output in 10pt).

2006-01-24 [v.1.37] <fj@phys.soton.ac.uk>
Added a significant number of comments on the use of variables and their initialization.
Also cleaned up and added more instructive text on the actual compilation of the CWEB

source code. As of today, the CWEB source for the MAGBRAGG program (source file
magbragg.w) comprises 261933 bytes and 6086 lines of code. The size of the compiled
(OSX) executable is 78828 bytes, and the PostScript documentation is 1673601 bytes
(125 pages of A4 output in 10pt).

2006-02-09 [v.1.38] <fj@phys.soton.ac.uk>
As I now for a longer time of period have sketched on implementing the exact methodol-
ogy of solution for the waves inside the homogeneous elements of the discretized medium,
I today added the first sections on the theoretical part of a rigorous theory of wave
propagation. As of today, the CWEB source for the MAGBRAGG program (source file
magbragg.w) comprises 305905 bytes and 7095 lines of code. The size of the compiled
(OSX) executable is 88002 bytes, and the PostScript documentation is 1778021 bytes
(135 pages of A4 output in 10pt).

2006-02-11 [v.1.39] <fj@phys.soton.ac.uk>
Added two sections on how the amplitude evolution in the rigorous theory of wave
propagation actually can be reduced to the evaluation of an elliptic function of the
standard form

∫ v(ζ)

v(ζ0)

dv

(a4v4 + a3v3 + a2v2 + a1v + a0)1/2
,

with its solution v(z) expressed in terms of the Weierstrass elliptic function ℘(ζ; g2, g3)
with the invariants g2 and g3 explicitly expressed in terms of a0, a1, a2, a3, and a4.

2006-03-13 [v.1.40] <fj@phys.soton.ac.uk>
After having spent some considerable time trying to verify that the integral equation

∫ v(ζ)

v(ζ0)

dv

(a4v4 + 4a3v3 + 6a2v2 + 4a1v + a0)1/2
,

which naturally appear in the rigorous theory of cross-phase modulation in nonlinear
magneto-optical media, really has the explicit solution

v(ζ) = v0 +

√

f(v0)℘
′(ζ) + 1

2f
′(v0)[℘(ζ)− 1

24f
′′(v0)] +

1
24f(v0)f

′′′(v0)

2[℘(ζ)− 1
24f

′′(v0)]2 − 1
48f(v0)f

(iv)(v0)
.

32 REVISION HISTORY OF THE PROGRAM MAGBRAGG §26

with quartic invariants

g2 ≡ a0a4−4a1a3+3a22, g3 ≡

∣
∣
∣
∣
∣
∣

a0 a1 a2
a1 a2 a3
a2 a3 a4

∣
∣
∣
∣
∣
∣

= a0a2a4+2a1a2a3−a32−a0a23−a21a4,

I today realized that the first edition of E. T. Whittaker’s A Course of Modern Analysis

(Cambridge University Press, Cambridge, 1902) actually has a printing error in one of
the terms in the denominator of the solution. This error has obviously been fixed in later
editions of the book, for example in E. T. Whittaker and G. N. Watson, A Course of

Modern Analysis, 4th Reprinted Edn. (Cambridge University Press, Cambridge, 1996),
ISBN 0-521-58807-3, but it caused be a considerable nuisance before I was able to track
the error down. The verification of the solution was checked using the following blocks
of MapleV code:

restart:

f:=a[0]*v^4+4*a[1]*v^3+6*a[2]*v^2+4*a[3]*v+a[4];

g[2]:=a[0]*a[4]-4*a[1]*a[3]+3*a[2]^2;

g[3]:=a[0]*a[2]*a[4]+2*a[1]*a[2]*a[3]-a[2]^3-a[0]*a[3]^2-a[1]^2*a[4];

df[0]:=eval(f,v=v0):

df[1]:=eval(diff(f,v$1),v=v0):

df[2]:=eval(diff(f,v$2),v=v0):

df[3]:=eval(diff(f,v$3),v=v0):

df[4]:=eval(diff(f,v$4),v=v0):

tmp[1]:=sqrt(df[0])*WeierstrassPPrime(z,g[2],g[3]):

tmp[2]:=(1/2)*df[1]*(WeierstrassP(z,g[2],g[3])-(1/24)*df[2]):

tmp[3]:=(1/24)*df[0]*df[3]:

tmp[4]:=2*(WeierstrassP(z,g[2],g[3])-(1/24)*df[2])^2:

tmp[5]:=(1/48)*df[0]*df[4]:

v:=v0+(tmp[1]+tmp[2]+tmp[3])/(tmp[4]-tmp[5]):

p:=a[0]*v^4+4*a[1]*v^3+6*a[2]*v^2+4*a[3]*v+a[4]:

testfunc:=(diff(v,z))^2-p:

testfunc:=simplify(testfunc);

As this result was the only missing link in the formulation of an explicit solution to
the wave propagation problem in nonlinear magneto-optical media, taking into account
also weakly phase-mismatched nonlinear source terms, the only task remaining now is
to formulate the algorithm for solving the inverse problem using this more stringent
method.

2006-03-20 [v.1.41] <fj@phys.soton.ac.uk>
Added a few paragraphs on the rigorous theory of wave propagation, clarifying the role
of the constant of integration Γ and its calculation from the phase of the transmitted field
and the amplitude-related invariants of propagation. This now interconnects more natu-
rally to the formulation of the wave propagation as an inverse problem, being the natural
mode of solving for reflectances as well as transmittances. I also took the opportunity to
write an email to MathWorld, pointing out that their solution to the Weierstrass form
of the integral equation, http://mathworld.wolfram.com/EllipticIntegral.html ,
Eqs. (51)–(56), actually contains errors; of course I could not resist the opportunity to
provide the MapleV blocks I used for my own verification, rather than using Mathemat-
ica code!

§26 MAGBRAGG REVISION HISTORY OF THE PROGRAM 33

2006-05-01 [v.1.42] <fj@phys.soton.ac.uk>
Added support for initialization of the grating structure as a fractal set, of the Cantor
fractal type. This possibility is in the program now accessed via the command-line
option −−grating fractal cantor [options]. The initialization is done using re-
cursion with the function init cantor fractal grating (), which was finished today. As of
today, the CWEB source for the MAGBRAGG program (source file magbragg.w) comprises
335649 bytes and 7753 lines of code. The size of the compiled (CYGWIN) executable
is 95217 bytes, and the PostScript documentation is 1874643 bytes (148 pages of A4
output in 10pt).

2007-01-10 [v.1.43] <http://jonsson.eu>
Seefeld, Austria. Midnight. Cleaned up the theoretical part preceeding the algorithm
of computation and merged all bibliographical references into one separate section at
the end of the document.

2011-12-18 [v.1.44] <http://jonsson.eu>
Updated Makefile:s for the generation of figures. Also corrected a rather stupid way
of removing preceeding paths of file names.

34 COMPILING THE SOURCE CODE MAGBRAGG §27

27. Compiling the source code. The program is written in CWEB, generating ANSI C (ISO C90)
conforming source code and documentation as plain TEX-source, and is to be compiled using the sequences
as outlined in the Makefile listed below.

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.

#

The CTANGLE program converts a CWEB source document into a C program which

may be compiled in the usual way. The CWEAVE program converts the same CWEB

file into a TeX file that may be formatted and printed in the usual way.

#

Copyright (C) 2002-2006, Fredrik Jonsson <fj@phys.soton.ac.uk>

#

CTANGLE = ctangle

CWEAVE = cweave

CC = gcc

CCOPTS = -O2 -Wall -ansi -std=iso9899:1990 -pedantic

LNOPTS = -lm

TEX = tex

DVIPS = dvips

DVIPSOPTS = -ta4 -D1200

METAPOST = mp

all: magbragg magbragg.ps

magbragg: magbragg.o

$(CC) $(CCOPTS) -o magbragg magbragg.o $(LNOPTS)

magbragg.o: magbragg.w

$(CTANGLE) magbragg

$(CC) $(CCOPTS) -c magbragg.c

magbragg.ps: magbragg.dvi

$(DVIPS) $(DVIPSOPTS) magbragg.dvi -o magbragg.ps

magbragg.dvi: magbragg.w

make -C figures/

$(CWEAVE) magbragg

$(TEX) magbragg.tex

clean:

make clean -ik -C figures/

-rm -Rf magbragg * *.c *.o *.exe *.dat *.tgz *.pdf

-rm -Rf *.tex *.aux *.log *.toc *.idx *.scn *.dvi *.ps

archive:

make -ik clean

tar --gzip --directory=../ -cf magbragg.tgz magbragg

This Makefile essentially executes two major calls. First, the CTANGLE program parses the CWEB source
document magbragg.w to extract a C source file magbragg.c which may be compiled in the usual way using
any ANSI C conformant compiler. The output source file includes #line specifications so that any debugging

§27 MAGBRAGG COMPILING THE SOURCE CODE 35

can be done conveniently in terms of the original CWEB source file. Second, the CWEAVE program parses the
same CWEB source file to extract a plain TEX source file magbragg.tex which may be compiled in the usual
way. It takes appropriate care of typographic details like page layout and the use of indentation, italics,
boldface, and so on, and it supplies extensive cross-index information that it gathers automatically.
After having executed make in the same catalogue where the files magbragg.w and Makefile are located,

one is left with an executable file magbragg, being the ready-to-use compiled program, and a PostScript
file magbragg.ps which contains the full documentation of the program, that is to say the document you
currently are reading. Notice that on platforms running Windows NT, Windows 2000, Windows ME, or any
other operating system by Microsoft, the executable file will instead automatically be called magbragg.exe.
This convention also applies to programs compiled under the UNIX-like environment CYGWIN.

36 RUNNING THE PROGRAM MAGBRAGG §28

28. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program. Since the command line for some problems tend to be quite lengthy, since all
material parameters and optical field inputs to the program must be specified, it is convenient to put blocks
for the program calls into a Makefile, which makes it easy to maintain a structure in the simulations, as well
as ensuring traceability of the steps in the generation of graphs.
As an example of such a call, the following block is included as an example in the enclosed Makefile:

testsimulation:

@for g in 0.0 1.0 2.0; do \

./magbragg --verbose --outputfile fig1-$$g \

--spectrumfile fig1-$$g.rsp.dat \

--gratinglength 7.326376e-6 -N 1800 \

--grating sinusoidal n 2.0550 0.1250 366.3188e-9 \

g $$g’e-3’ 0.0 1.0 \

pe 0.0 0.0 1.0 \

pm 0.0 0.0 1.0 \

qe 0.0 0.0 1.0 \

qm 0.0 0.0 1.0 \

--refindsurr 2.0550 -M 2000 \

--lambdastart 1300.0e-9 --lambdastop 1700.0e-9 \

--trmintensity 7.0e8 7.0e8 1 \

--trmellipticity 0.0 0.0 1 ;\

done

In the following sections, a complete listing of all command line options accepted by the MAGBRAGG

program is presented.

§29 MAGBRAGG SPECIFYING GRATING TYPES 37

29. Specifying grating types. The MAGBRAGG program currently accepts specifications of three
different main types of gratings: stepwise gratings, sinusoidal gratings, and chirped sinusoidal gratings.
The stepwise gratings are simply stacks of homogeneous layers, stacked to form a grating, and these gratings
can be composed of two or more different materials. As an important subclass of the stepwise gratings,
the binary gratings are probably the most important ones, being composed of alternating layers of only two
types of media.
Throughout the program, the following definitions of the material parameters apply, to the refractive

index n(z), gyration coefficient g(z), nonlinear optical parameters p(e)(z) and q(e)(z), and nonlinear magneto-
optical parameters p(m)(z) and q(m)(z),

n[k] = nk = [1 + χ(ee)
xx]1/2,

g[k] = gk = iχ(eem)
xyz Bz

0/(2nk),

pe [k] = p
(e)
k = χeeee

xxxx − χeeee
xyyx,

qe [k] = q
(e)
k = χeeee

xxxx + χeeee
xyyx,

pm [k] = p
(m)
k = i(χeeeem

xyyyz − χeeeem
xxxyz)B

z
0 ,

qm [k] = q
(m)
k = i(χeeeem

xyyyz + χeeeem
xxxyz)B

z
0 ,

where n[k], g[k], pe [k], qe [k], pm [k], qm [k] denote the variables as internally used in the MAGBRAGG

program to store the corresponding material data for the N − 1 homogeneous segments zk ≤ z < zk+1,
k = 1, 2, . . . , N − 1.
In terms of the Verdet constant Vk of a homogeneous layer, as being the commonly used measure of the

linear magneto-optical rotational strength of the material, the g-parameter of the MAGBRAGG program is
expressed as

gk = VkB
z
0c/ω,

which simply follows from the general relation

iχ(eem)
xyz = 2ncV/ω.

30. Stepwise grating structures. The stepwise grating structures are specified using the command line
option

−−grating stepwise [twolevel〈. . .〉|threelevel〈. . .〉]
where twolevel, threelevel etc., states the number of materials used in the stacking of the layers. For the
twolevel (binary) type of gratings, the syntax is

−−grating stepwise twolevel t1 〈t1〉 t2 〈t2〉 n1 〈n1〉 n2 〈n2〉 g1 〈g1〉 g2 〈g2〉
pe1 〈p(e)1 〉 pe2 〈p

(e)
2 〉 pm1 〈p

(m)
1 〉 pm2 〈p

(m)
2 〉

qe1 〈q(e)1 〉 qe2 〈q
(e)
2 〉 qm1 〈q

(m)
1 〉 qm2 〈q(m)

2 〉
where t1 and t2 are the geometrical layer thicknesses of the first two layers 0 ≤ z ≤ t1 and t1 ≤ z ≤ t1 + t2,
and n1 and n2 are the corresponding refractive indices of these layers, respectively.
The grating is then composed by repeating the basic pair of layers, to give a grating composed of in total

N −1 homogeneous layers, as specified with the −N option. Notice that if the total number of layers N −1 is
an odd number (i. e. specifying an even number of interfaces N), the last layer will possess the same material
properties and geometrical thickness as the first layer.

38 SPECIFYING GRATING TYPES MAGBRAGG §31

31. Sinusoidal structures. The sinusoidal grating structures are specified using the command line option

−−grating sinusoidal n 〈n0〉 〈∆n〉 〈Λn〉 g 〈g0〉 〈∆g〉 〈Λg〉
pe 〈p(e)0 〉 〈∆p

(e)
0 〉 〈Λ

(e)
p 〉 pm 〈p(m)

0 〉 〈∆p
(m)
0 〉 〈Λ

(m)
p 〉

qe 〈q(e)0 〉 〈∆q
(e)
0 〉 〈Λ

(e)
q 〉 qm 〈q(m)

0 〉 〈∆q(m)
0 〉 〈Λ(m)

q 〉
In terms of the supplied command line options, the resulting grating structure is then described by the
continuous distribution of refractive index, gyration coefficient, and nonlinear optical and magneto-optical
coefficients as

n(z) = n0 +∆n sin(2πz/Λn),

g(z) = g0 +∆g sin(2πz/Λg),

p(e)(z) = p
(e)
0 +∆p(e) sin(2πz/Λ(e)

p),

q(e)(z) = q
(e)
0 +∆q(e) sin(2πz/Λ(e)

q),

p(m)(z) = p
(m)
0 +∆p(m) sin(2πz/Λ(m)

p),

q(m)(z) = q
(m)
0 +∆q(m) sin(2πz/Λ(m)

q),

which in the discretized and oversampled model as used in the internal representration of the MAGBRAGG

program hence becomes
nj = n0 +∆n sin(2πzj/Λn),

gj = g0 +∆g sin(2πzj/Λg),

p
(e)
j = p

(e)
0 +∆p(e) sin(2πzj/Λ

(e)
p),

q
(e)
j = q

(e)
0 +∆q(e) sin(2πzj/Λ

(e)
q),

p
(m)
j = p

(m)
0 +∆p(m) sin(2πzj/Λ

(m)
p),

q
(m)
j = q

(m)
0 +∆q(m) sin(2πzj/Λ

(m)
q),

for j = 1, 2, . . . , N − 1. For sinusoidal gratings, discrete phase jumps of the refractive index distribution can
also be applied, by using the −−phasejump command line option. Subsequent apodization of the structure
can also be applied, using the –apodize option.

§32 MAGBRAGG SPECIFYING GRATING TYPES 39

32. Sinusoidal chirped structures. The chirped grating structures, being sinusoidal gratings with a spatially
varying grating period, are specified using the somewhat extensive command line option

−−grating chirped n 〈n0〉 〈∆n〉 〈Λn〉 〈ηn〉 g 〈g0〉 〈∆g〉 〈Λg〉 〈ηg〉
pe 〈p(e)0 〉 〈∆p

(e)
0 〉 〈Λ

(e)
p 〉 〈η(e)p 〉 pm 〈p(m)

0 〉 〈∆p
(m)
0 〉 〈Λ

(m)
p 〉 〈η(m)

p 〉
qe 〈q(e)0 〉 〈∆q

(e)
0 〉 〈Λ

(e)
q 〉 〈η(e)q 〉 qm 〈q(m)

0 〉 〈∆q(m)
0 〉 〈Λ(m)

q 〉 〈η(m)
q 〉

Here 〈n0〉 is the bias refractive index across the grating, 〈∆n〉 the modulation of the refractive index around
the bias value, that is to say half the bottom-to-peak value of the modulated index of refraction, 〈Λn〉 is the
initial geometrical grating period at z = 0, and 〈ηn〉 the chirp of the grating, being the relative change of
the grating period over the length of the grating. The other grating parameters are specified analogously,
for gyration coefficient and nonlinear optical and magneto-optical coefficients. The chirp parameter is here
defined as the change in geometrical grating period per unit geometrical distance along the grating, or

ηn =
Λ(L)− Λ(0)

L

where Λ(z) denotes the geometrical grating period as function of the spatial coordinate z along the grating.
To illustrate the meaning of the chirp parameter, consider a chirped refractive index distribution over a

geometrical distance L and with a bias refractive index n0. To give a resonance in reflection ranging from
vacuum wavelength λa to λb, say, the grating period could be either increasing or decreasing with spatial
coordinate z. By choosing the initial part of the grating (at z = 0) to be resonant in reflection for a vacuum
wavelength λa, the initial grating period Λn should be chosen as half the optical period at resonance, or

Λn =
λa
2n0

.

With this initial grating period the chirp parameter should, in order to give a final resonance in reflection
at vacuum wavelength λb at the end of the grating (at z = L), then simply be chosen as

ηn =
λb − λa
2n0L

.

Notice that whenever λb < λa, the chirp parameter is negative, indicating a grating period which is decreasing
with increasing spatial coordinate z. This convention of sign for the chirp parameter is consistently kept
throughout the algorithms of the MAGBRAGG program.
In terms of the supplied command line options, the resulting chirped grating structure is described by the

continuous distribution of refractive index, gyration coefficient, and nonlinear optical and magneto-optical
coefficients as

n(z) = n0 +∆n sin((2π/ηn) ln(1 + ηnz/Λn)),

g(z) = g0 +∆g sin((2π/ηg) ln(1 + ηgz/Λg)),

p(e)(z) = p
(e)
0 +∆p(e) sin((2π/η(e)p) ln(1 + η(e)p z/Λ(e)

p)),

p(m)(z) = p
(m)
0 +∆p(m) sin((2π/η(m)

p) ln(1 + η(m)
p z/Λ(m)

p)),

q(e)(z) = q
(e)
0 +∆q(e) sin((2π/η(e)q) ln(1 + η(e)q z/Λ(e)

q)),

q(m)(z) = q
(m)
0 +∆q(m) sin((2π/η(m)

q) ln(1 + η(m)
q z/Λ(m)

q)),

which in the discretized and oversampled model as used in the internal representration of the MAGBRAGG

program hence becomes

nj = n0 +∆n sin((2π/ηn) ln(1 + ηnzj/Λn)),

gj = g0 +∆g sin((2π/ηg) ln(1 + ηgzj/Λg)),

p
(e)
j = p

(e)
0 +∆p(e) sin((2π/η(e)p) ln(1 + η(e)p zj/Λ

(e)
p)),

p
(m)
j = p

(m)
0 +∆p(m) sin((2π/η(m)

p) ln(1 + η(m)
p zj/Λ

(m)
p)),

q
(e)
j = q

(e)
0 +∆q(e) sin((2π/η(e)q) ln(1 + η(e)q zj/Λ

(e)
q)),

q
(m)
j = q

(m)
0 +∆q(m) sin((2π/η(m)

q) ln(1 + η(m)
q zj/Λ

(m)
q)),

40 SPECIFYING GRATING TYPES MAGBRAGG §32

for j = 1, 2, . . . , N − 1.
Notice that the geometrical period of any of the optical/physical properties described by the above

distributions is given by

2π

{geometrical period} =
∂

∂z
{argument of sin(. . .)}.

For example, the refractive index distribution

n(z) = n0 +∆n sin((2π/ηn) ln(1 + ηnz/Λn))

has its spatially varying local grating period Λloc(z) given by

2π

Λloc(z)
=

∂

∂z
[(2π/ηn) ln(1 + ηnz/Λn)] = (2π/ηn)

ηn/Λn

(1 + ηnz/Λn)
=

2π

(Λn + ηnz)

that is to say, the geometrical local period is given as a linear function which in terms of the vacuum resonance
wavelengths λa and λb becomes

Λloc(z) = Λn + ηz =
λa
2n0

+
(λb − λa)
2n0L

z =
1

2n0
(λa + (λb − λa)z/L).

For the sake of consistency with the discussion earlier in this section, λa is taken as the vacuum resonance
wavelength at z = 0, while λb is the corresponding wavelength of resonance at z = L. For chirped gratings,
as well as for the sinusoidal gratings, discrete phase jumps of the refractive index distribution can also be
applied, by using the −−phasejump command line option. Subsequent apodization of the structure can also
be applied, using the –apodize option.

33. Fractal structures.
[TEXT STILL TO BE WRITTEN]

34. Discrete phase jumps. Discrete phase jumps in sinusoidal type gratings (of sinusoidal of chirped type
as previously described) can be specified using the −−phasejump option, with syntax

−−phasejump 〈ϕjump〉 〈zjump〉
where ϕjump is the phase shift in radians to be applied for the grating at all spatial coordinates z ≥ zjump. For
sinusoidal type gratings, the effect is that the refractive index and gyration coefficient distributions become

n(z) = n0 +∆n sin(2πz/Λn + ϕ(z)),

g(z) = g0 +∆g sin(2πz/Λg + ϕ(z)),

where

ϕ(z) =

{
0, z < zjump

ϕjump, z ≥ zjump
,

Notice that the parameters supplied with the −−phasejump option only affects the (linear) refractive index
and gyration coefficient distributions n(z) and g(z); all other (nonlinear) material parameters are left
unaffected, irregardless of potential spatial modulation schemes.

§35 MAGBRAGG SPECIFYING GRATING TYPES 41

35. The refractive index surrounding the grating. The refractive index surrounding the grating is specified
using the command line option

−−refindsurr 〈next〉
where 〈next〉 is the refractive index surrounding the grating. If the surrounding refractive index is not
specified at the command line at execution of the program, a default value of next = 1.0 (vacuum) is used in
the simulation.

36. Apodization of the grating. Apodization of the grating structure is typically applied in order to get
rid of any occurring Gibbs oscillations due to a rapid change of the index modulation at the ends of the
grating. For a more detailed description of Gibbs oscillations, see for example Refs. [14,15]. By applying
apodization, the MAGBRAGG program force a smoother transition between modulated and non-modulated
regions of the grating. The apodization is invoked by the −−apodize option, with syntax

−−apodize 〈Lapod〉
where Lapod is the apodization length at each end of the grating. The apodization is performed at the ends
of the grating according to a multiplicative factor of the modulation amplitudes of the refractive index and
gyration coefficient, of the form

f(z) =

[1− cos(πz/Lapod)]/2, 0 ≤ z ≤ Lapod,
1, Lapod < z < L− Lapod,
[1− cos(π(z − L)/Lapod)]/2, L− Lapod ≤ z ≤ L,

and otherwise f(z) = 0, for any z outside the above domains of definition, where Lapod is the effective
apodization length, being the floating point parameter specified after the −−apodize option, and L the
geometrical overall length of the grating, e. g. as specified with the −−gratinglength option. Notice that
as in the previously described −−phasejump option, the parameter supplied with the −−apodize option
only apodizes the (linear) refractive index and gyration coefficient distributions n(z) and g(z); all other
(nonlinear) material parameter distributions are left unaffected.

37. Specifying transmitted intensity. The generated data relating a specified optical output to an optical
input can in the program automatically be iterated over a range of values of the transmitted optical intensity,
expressed in regular SI units as Watts per square meter (W/m2). The command line syntax for specifying
that the program should generate the inverse relation for Mi discrete values of the transmitted optical
intensity in a range from Istart to Istop is

−−trmintensity 〈Istart〉 〈Istop〉 〈Mi〉
Notice that parameters throughout the program are to be specified in terms of regular SI units. In case the
in optical physics quite commonly used quantity of gigawatts per square centimeter is preferred, just use the
conversion 1GW/cm2 = 1013 W/m2.

38. Specifying transmitted ellipticity. The command line syntax for specification of the range of ellipticity
of the transmitted polarization state is analogous to that of the transmitted intensity, as

−−trmellipticity 〈ǫstart〉 〈ǫstop〉 〈Me〉
where 〈ǫstart〉 and 〈ǫstop〉 are the start and stop values for the normalized transmitted ellipticity ǫ, which
in terms of the transmitted Stokes parameters is defined as ǫ ≡ W3/W0. (For the definitions of the Stokes
parameters in terms of the electric field of the light wave, see the corresponding separate section included in
this documentation.) Here ǫ = −1 corresponds to right circular polarization (RCP) while ǫ = 1 corresponds
to left circular polarization (LCP), with ǫ = 0 corresponding to linear polarization. Values intermediate of
those give the various degrees of elliptic polarization states. As in the case of specification of the transmitted
intensity, 〈Me〉 is the number of discrete steps of the ellipticity that will be iterated over in the simulation.

42 SPECIFYING GRATING TYPES MAGBRAGG §39

39. Specifying optical vacuum wavelength interval to be scanned. For the sampling of optical spectra,
with the reflectance and transmittance sampled as function of optical vacuum wavelength, the interval of
computation is specified using the syntax

−−lambdastart 〈λstart〉 −−lambdastop 〈λstop〉
where λstart and λstop specifies the wavelength domain. The number of samples M to be calculated is
specified using the syntax

−M 〈M〉
The specific discrete vacuum wavelength λk at which the computation is performed are

λk = λstart +
(k − 1)

(M − 1)
(λstop − λstart),

for k = 1, 2, . . . ,M .

40. Scaling of Stokes parameters to yield optical intensity. To force the output Stokes parameters to be
expressed in terms of optical intensity units of Watts per square meter, rather than the regular square Volts
per meter, use the command line option

−−scale_stokesparams 1.327209e−3

forcing the program to save the scaled Stokes parameters S′
k = 1.327209 × 10−3Sk to file instead of the

original Sk, k = 0, 1, 2, 3. As a default, and as a matter of convention of electrodynamics in SI units, all
Stokes parameters are given in V2/m2, through their definition. For example, the incident field (which is
calculated by the program in this inverse formulation of the problem) is expressed in terms of the Stokes
parameters as

S0 = |Ef
0+ |

2 + |Ef
0− |

2, S1 = 2Re[Ef∗
0+E

f
0−],

S3 = |Ef
0+ |

2 − |Ef
0− |

2, S2 = 2 Im[Ef∗
0+E

f
0−].

However, the direct interpretation of these quantities in terms of squared Volts per square metres is sometimes
somewhat inconvenient; therefore, those parameters can be scaled to give an interpretation of the intensity
(in regular SI units measured in Watts per square metres), as S′

k = (ε0c/2)Sk, or explicitly

S′
0 = (ε0c/2)[|Ef

0+ |
2 + |Ef

0− |
2], S′

1 = (ε0c/2)2Re[E
f∗
0+E

f
0−],

S′
3 = (ε0c/2)[|Ef

0+ |
2 − |Ef

0− |
2], S′

2 = (ε0c/2)2 Im[Ef∗
0+E

f
0−].

In this representation, S′
0 is now identical to the incident intensity Iin [W/m2]. In order to have those scaled

Stokes parameters S′
k written to file, rather than the default ones, one convenient possibility is to use the

previously added −−scale_stokesparams option, to include −−scale_stokesparams 1.327209e−3 at the
command line when invoking the program. The numerical value of this scaling was obtained from

ε0c/2 = (8.854187817 . . .× 10−12 F/m)× (2.99792458× 108 m/s)/2

≈ 1.327209× 10−3 F/s.

In regular SI units as here used, the physical dimension of the quantity ε0c/2 is [(A·s)/(V ·m)]·[m/s] = [A/V],
so the physical dimension of (ε0c/2)Sk is hence [A/V] · [V2/m2] = [W/m2], as expected for an intensity
measure (energy flow per unit area in the plane orthogonal to the direction of wave propagation). For any
other scaling factor of the Stokes parameters, use the general syntax

−−scale_stokesparams 〈a〉
which forces the program to save the scaled Stokes parameters S′

k = aSk to file instead of the original Sk,
k = 0, 1, 2, 3.

§41 MAGBRAGG SPECIFYING GRATING TYPES 43

41. Saving intra-grating spatial evolution of optical field and intensity. The optical intensity and/or general
spatial evolution of the electromagnetic field inside the grating can be saved to file using the command line
option of syntax

−M 〈M〉
The data for the field evolution is written to file in the format

z1 〈Ef
+(z1)〉 〈Ef

−(z1)〉 〈Eb
+(z1)〉 〈Eb

−(z1)〉
z2 〈Ef

+(z2)〉 〈Ef
−(z2)〉 〈Eb

+(z2)〉 〈Eb
−(z2)〉

...
...

...
zN 〈Ef

+(zN)〉 〈Ef
−(zN)〉 〈Eb

+(zN)〉 〈Eb
−(zN)〉

where each blank space-separated entry 〈Ef
+(zk)〉, 〈Ef

−(zk)〉, 〈Eb
+(zk)〉, or 〈Eb

−(zk)〉 for an electric field
component constitutes the pair of its real and imaginary parts,

〈Ef
+(zk)〉 ≡ 〈Re[Ef

+(zk)]〉 〈Im[Ef
+(zk)]〉,

where each number 〈Re[Ef
+(zk)]〉 or 〈Im[Ef

+(zk)]〉 in the pair in the saved file is represented in plain ASCII
by 16 significant digits.
[TEXT STILL TO BE WRITTEN]

42. Saving the spatial profile of grating structure. The spatial distribution of the refractive index, gyration
coefficient, and nonlinear optical and magneto-optical parameters can in the progress of the simulation be
written to file using the command line option

−−writegratingfile 〈filename〉
[TEXT STILL TO BE WRITTEN]

43. Intragrating intensity information. In many cases the density distribution of optical intensity inside
the medium is of particular interest, since cavity-effects or other resonant phenomena can considerably
increase the intensity locally along the grating. The program can automatically track down the maximum
present intensity in the grating and the corresponding location, presenting the information either at the
terminal window in which the program was started or written to file. The syntax for getting this information
calculated and displayed in the terminal window is simply

−−intensityinfo.

To get the information instead written to file, use

−−intensityinfologfile 〈filename〉,
where 〈filename〉 is the name of the destination file.

44 POSTPROCESSING OF THE DATA TO GET THE DIRECT RELATION MAGBRAGG §44

44. Postprocessing of the data to get the direct relation. The data generated by the program
naturally relate the inverse relation between the incident and transmitted (or reflected) optical fields. In
other words, the input data are typically equidistantly spaced in the transmitted intensity and/or ellipticity,
while the spacing of the calculated data (the incident optical field) is
For topological mappings of the data, such as in Fig. X [FIGURE TO BE INSERTED], it is for most cases

of no importance whether it is the direct relation (transmitted or reflected field as function of incident field)
or its inverse (incident or reflected field as function of transmitted field) that is described by the set of data.
However, in many cases we are interested in a maping that corresponds to a direct experimental setup. For
example, whenever we have a linearly polarized incident light in the experimental setup of evaluation, the
transmitted polarization state generally differ from the input one, and we must take into account that the
input data will
[TEXT STILL TO BE WRITTEN]

§45 MAGBRAGG THE MAIN PROGRAM 45

45. The main program. Here follows the general outline of the main program.

〈Library inclusions 46 〉
〈Global definitions 47 〉
〈Data structure definitions 48 〉
〈Global variables 49 〉
〈Subroutines 50 〉
int main (int argc , char ∗argv [])
{
〈Declaration of local variables 51 〉
〈 Initialize variables 61 〉
〈Parse command line for parameter values 116 〉
〈Check for specified trajectory of transmitted Stokes parameters 134 〉
〈Open files for output 135 〉
〈Allocate optical field vectors 62 〉
〈 Initiate grating structure 64 〉
〈 Initiate surrounding medium 70 〉
〈Calculate intragrating layer reflectances 71 〉
〈Calculate incident optical field spectrum 72 〉
〈Print information on maximum optical intensity in grating 87 〉
〈Deallocate optical field vectors 63 〉
〈Close output files 136 〉
return (SUCCESS);
}

46. The standard ANSI C libraries included in this program are:

math.h For access to mathematical functions.

time.h For time stamps and estimation of computation time.

stdio.h For file access and any block involving fprintf .

stdlib.h For memory allocation, malloc , exit , free etc.

string.h For string manipulation, strcpy , strcmp etc.

ctype.h For access to the isalnum routine.

〈Library inclusions 46 〉 ≡
#include <math.h>

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

This code is used in section 45.

46 THE MAIN PROGRAM MAGBRAGG §47

47. Global definitions. There are just a few global definitions present in the MAGBRAGG program:

VERSION The current program revision number.

COPYRIGHT The copyright banner.

SUCCESS The return code for successful program termination.

FAILURE The return code for unsuccessful program termination.

NCHMAX The maximum number of characters allowed in strings for storing file names,
including path.

〈Global definitions 47 〉 ≡
#define VERSION "1.43"

#define COPYRIGHT "Copyright (C) 2002−2007, Fredrik Jonsson"

#define SUCCESS (0)
#define FAILURE (1)
#define NCHMAX (256)

This code is used in section 45.

48. Data structure definitions. The dcomplex data structure contains real and imaginary parts in double
precision, and is also the basic data structure used for the allocation of complex valued vectors of double
precision.

〈Data structure definitions 48 〉 ≡
typedef struct DCOMPLEX {
double r, i;
} dcomplex;

This code is used in section 45.

49. Declaration of global variables. The only global variables allowed in my programs are optarg , which is
a pointer to the the string of characters that specified the call from the command line, and progname , which
simply is a pointer to the string containing the name of the program, as it was invoked from the command
line.

〈Global variables 49 〉 ≡
extern char ∗optarg ;
char ∗progname ;

This code is used in section 45.

50. Listing of subroutines called by the main program.

〈Subroutines 50 〉 ≡
〈Routine for checking for numerical characters 88 〉
〈Routine for initialization of Cantor type fractal gratings 89 〉
〈Routines for removing preceding path of filenames 90 〉
〈Routines for memory allocation of vectors 111 〉
〈Routines for generation of random numbers 93 〉
〈Routines for complex arithmetics 94 〉
〈Routines for displaying help message 130 〉

This code is used in section 45.

§51 MAGBRAGG DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM 47

51. Declaration of local variables of the main program. In CWEB one has the option of adding
variables along the program, for example by locally adding temporary variables related to a given sub-block
of code. However, my philosophy in the MAGBRAGG program is to keep all variables of the main section
collected together, so as to simplify tasks as, for example, tracking down a given variable type definition.
[ADD A LIST OF VARIABLE DESCRIPTIONS WITH THE ’VARITEM’ MACRO]

somevariable Some description of somevariable .

〈Declaration of local variables 51 〉 ≡
〈Physical and mathematical constants 52 〉
〈Time variables 53 〉
〈Declaration of complex arrays storing the electrical field distribution 54 〉
〈Declaration of Boolean variables for execution control 55 〉
〈Discretization parameters 56 〉
〈Grating parameters 57 〉
〈Declaration of file pointers 58 〉
〈Declaration of strings and file names 59 〉
〈Declaration of local dummy variables 60 〉
long nne , jje , mmtraject ;
long ranseed ; /∗ seed for random number generator ∗/
long maxintens layer = 0;
int fractal level = 0; /∗ The recursion level in construction of Cantor-type fractal gratings ∗/
int maximum fractal level = 0;
/∗ The maximum allowed recursion level in construction of Cantor-type fractal gratings ∗/

double ∗w0traj = Λ, ∗w3traj = Λ;
double lambdastart ; /∗ The start vacuum wavelength λstart of the spectrum to be sampled ∗/
double lambdastop ; /∗ The stop vacuum wavelength λstop of the spectrum to be sampled ∗/
double lambda ; /∗ Dummy variable to hold the vacuum wavelength at a discrete spectral sample ∗/
double omega ; /∗ Ditto for the angular frequency ω ≡ 2π/λ ∗/
double ievolambda ;
double apolength ; /∗ Length Lapod over which each end of the grating should be apodized ∗/
double phasejumpangle ; /∗ The magnitude of the phase discontinuity ϕjump measured in radians ∗/
double phasejumpposition ; /∗ The position zjump in metres of the phase discontinuity ϕjump ∗/
double phi ; /∗ Dummy variable to hold the reference phase over the spatial extent of the grating ∗/
double gyroperturb position ; /∗ The position zp in metres of the peak of the added Lorentzian

perturbation ∆g(z) of the gyration coefficient g(z) ∗/
double gyroperturb amplitude ;

/∗ The zero-to-peak amplitude ap of the added Lorentzian perturbation ∆g(z) of the gyration
coefficient g(z) ∗/

double gyroperturb width ; /∗ The full width at half maximum wp of the added Lorentzian
perturbation ∆g(z) of the gyration coefficient g(z) ∗/

double nsurr ; /∗ The linear index of refraction of the medium surrounding the grating ∗/
double n1 , n2 , t1 , t2 , nper , ncrp , g1 , g2 , gper , gcrp , pe1 , pe2 , peper , pecrp , pm1 , pm2 , pmper ,

pmcrp , qe1 , qe2 , qeper , qecrp , qm1 , qm2 , qmper , qmcrp ;
double modn1 , modt1 , modg1 , modpe1 , modpm1 , modqe1 , modqm1 , aafp2 , aafm2 , aabp2 , aabm2 ;
double trmintensity , trmintenstart , trmintenstop , trmellipticity , trmellipstart , trmellipstop ,

stoke scalefactor ;
static double nndef = 600; /∗ Number of samples in spectrum ∗/
static double mmdef = 1000; /∗ Number of samples in grating ∗/
static double mmedef = 1; /∗ Number of samples in ellipticity ∗/
static double mmidef = 1; /∗ Number of samples in intensity ∗/
static double lldef = 0.050; /∗ Length of grating in metres ∗/
static double nsurrdef = 1.0; /∗ Default surrounding refractive index ∗/

48 DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM MAGBRAGG §51

static double lambdastartdef = 1536.0 · 10−9, lambdastopdef = 1546.0 · 10−9;

This code is used in section 45.

52. Declaration of numerical values of physical constants. All calculations performed by this program are
done in SI units, in which the fundamental physical constants take the values below.

〈Physical and mathematical constants 52 〉 ≡
static double pi = 3.1415926535897932384626433832795; /∗ π ∗/
static double twopi = 2.0 ∗ 3.1415926535897932384626433832795; /∗ 2π ∗/
static double c = 2.997925 · 108; /∗ Speed of light in vacuum, c [m/s] ∗/
static double epsilon0 = 8.854 · 10−12; /∗ Permittivity of vacuum, ε0 [As/Vm] ∗/

This code is used in section 51.

53. Declaration of time variables. Here any variables related to timing and estimation of computing
performance are declared. The significance of the variables are as follows:

initime The time at which the MAGBRAGG program is initialized. This variable is
initialized already in its declaration.

now Dummy variable for extraction of current time from the system.

eta Estimated time of arrival (ETA, not to be confused with the Greek letter η) of
successful termination of the MAGBRAGG program.

〈Time variables 53 〉 ≡
time t initime = time (Λ), now = time (Λ), eta = time (Λ);

This code is used in section 51.

54. Declaration of pointers to arrays of fields of dcomplex class, holding the intra-grating electrical field
distribution. These pointers will after the memory allocation for complex-valued vectors hold the spatial
distribution of the electric field inside the grating. The significance of the variables are as follows:

efp [k] ≡ Ef
+(z

+
k), The left circularly polarized forward traveling field component at z = zk taken

in the kth homogeneous layer of the discretized grating.

efm [k] ≡ Ef
−(z

+
k), The right circularly polarized forward traveling field component at z = zk taken

in the kth homogeneous layer of the discretized grating.

ebp [k] ≡ Eb
+(z

+
k), The left circularly polarized backward traveling field component at z = zk taken

in the kth homogeneous layer of the discretized grating.

ebm [k] ≡ Eb
−(z

+
k), The right circularly polarized backward traveling field component at z = zk taken

in the kth homogeneous layer of the discretized grating.

that is to say, in a loss-less medium in which the nonlinear correction to the linear refractive index is
determined by the magnitude of the circularly polarized components of the field envelopes, these arrays hold
the full complex spatial evolution of the electric field.

〈Declaration of complex arrays storing the electrical field distribution 54 〉 ≡
dcomplex ∗efp , ∗efm , ∗ebp , ∗ebm ;

This code is used in section 51.

§55 MAGBRAGG DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM 49

55. Declaration of Boolean variables. The Boolean variables are used as flags that internally are set and
recognized by the MAGBRAGG program, for example to determine states or modes of operation as specified by
the user via command line options. In the MAGBRAGG program, we use integer variables of short precision
for storing Boolean values, with the value 0 corresponding to the “false” state and 1 corresponding to the
“true” state.

〈Declaration of Boolean variables for execution control 55 〉 ≡
short verbose ; /∗ If nonzero, display information at terminal output during program execution ∗/
short randomdistribution ; /∗ If nonzero, use random layer thicknesses of a binary-type grating ∗/
short writegratingtofile ; /∗ If nonzero, save the grating structure to file ∗/
short scale stokesparams ; /∗ If nonzero, then scale Stokes parameters by stoke scalefactor ∗/
short normalize length to micrometer ; /∗ If nonzero, ∗/
short normalize intensity ; /∗ If nonzero, ∗/
short normalize ellipticity ; /∗ If nonzero, ∗/
short normalize internally ; /∗ If nonzero, ∗/
short odd layer ; /∗ Keeps track of odd and even grating layers in initialization ∗/
short chirpflag ; /∗ If nonzero, then apply chirp to periodicity of sinusoidal grating structures ∗/
short apodize ; /∗ If nonzero, apply apodization to the ends of the grating ∗/
short phasejump ;
/∗ If nonzero, apply at least one discrete phase discontinuity of the grating profile ∗/

short fieldevoflag ; /∗ If nonzero, then save spatial field distribution to file ∗/
short fieldevoflag efield ; /∗ If nonzero while fieldevoflag is nonzero, then save the complex electric

field as the spatial field distribution ∗/
short intensityevoflag ; /∗ If nonzero while fieldevoflag is nonzero, then save the field intensity as the

spatial field distribution ∗/
short fieldevoflag stoke ; /∗ If nonzero while fieldevoflag is nonzero, then save the Stokes parameters

as the spatial field distribution ∗/
short intensityinfo ; /∗ If nonzero, then display the maximum and minimum field intensities found

within the grating at terminal output before closing the program ∗/
short saveintensityinfologfile ;
/∗ If nonzero, then also save the displayed maximum and minimum intensities to a log file ∗/

short trmtraject specified ; /∗ If nonzero, ∗/
short save dbspectra ;
/∗ If nonzero, then save any transmission spectrum in logarithmic (dB) scale ∗/

short stokes parameter spectrum ; /∗ If nonzero, then save any transmission spectrum in terms of the
corresponding Stokes parameters ∗/

short display surrounding media ; /∗ If nonzero, then append also the surrounding medium when
saving the spatial grating profile to file ∗/

short perturbed gyration constant ; /∗ If nonzero, ∗/
This code is used in section 51.

50 DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM MAGBRAGG §56

56. Declaration of discretization parameters. These parameters determine the discretization of the problem
at hand, such as the number of points in intensity, ellipticity or wavelength to be scanned. The significance
of the variables are as follows:

mm The number of points M to be sampled in the spectrum between vacuum wave-
lengths λstart and λstop.

mme The number Me of ellipticities εtr of the transmitted light to be sampled in the
interval εtr,start ≤ ε ≤ εtr,stop.

mmi The number Mi of intensities Itr of the transmitted light to be sampled in the
interval Itr,start ≤ Itr ≤ Itr,stop.

〈Discretization parameters 56 〉 ≡
long mm , mme , mmi ;

This code is used in section 51.

§57 MAGBRAGG DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM 51

57. Declaration of grating parameters. These parameters fully describe the geometry and material prop-
erties of the medium in which the wave propagation is to be performed. The significance of the variables are
as follows:

ll Geometrical length L of the grating measured in metres.

nn The number N of discrete interfaces separating the N − 1 homogeneous layers of
the grating and the surrounding medium.

modnum If positive, this is the number of a manually modified layer, for instance a defect
or cavity layer possessing different geometrical or optical properties than the rest
of the structure described by any of the standard grating options.

∗z Pointer to an array of N elements for storing the coordinates of the discrete
interfaces z1, . . . , zN between homogeneous layers of the grating.

∗dz Pointer to an array of N − 1 elements containing the layer thicknesses dz [k] ≡
zk+1 − zk, k = 1, . . . , N − 1.

∗n, ∗g Pointers to arrays of N − 1 elements containing the refractive indices n[k] = nk

and magneto-optical gyration coefficients g[k] = gk = iχ
(eem)
xyz Bz

0/(2nk) of the
homogeneous layers.

∗pe , ∗qe Pointers to arrays of N − 1 elements containing the nonlinear optical coefficients
pe [k] = χeeee

xxxx − χeeee
xyyx and qe [k] = χeeee

xxxx + χeeee
xyyx of the homogeneous layers.

∗pm , ∗qm Pointers to arrays of N − 1 elements containing the nonlinear magneto-optical
coefficients pm [k] = i(χeeeem

xyyyz − χeeeem
xxxyz)B

z
0 and qm [k] = i(χeeeem

xyyyz + χeeeem
xxxyz)B

z
0 of

the layers.

∗etafp , ∗etafm Pointers to arrays of N − 1 elements for storing the nonlinear coefficients of
propagation ηf+ related to the phase evolution of forward (f) traveling left (+) and
right (−) circularly polarized components of in respective layer zj < z < zj+1,
with etafp [j] = ηf+(z

+
j) and etafm [j] = ηf−(z

+
j).

∗etabp , ∗etabm Analogous to ∗etafp and ∗etafm but instead for the nonlinear phase contribu-
tions etabp [j] = ηb+(z

+
j) and etabm [j] = ηb−(z

+
j) for backward traveling field

components.

∗taup , ∗taum Pointers to arrays of N elements for storing the forward intra-grating layer
transmittances τk+

and τk− .

∗taupp , ∗taupm Pointers to arrays of N elements for storing the backward intra-grating layer
transmittances τ ′k+

and τ ′k−
.

∗rhop , ∗rhom Pointers to arrays of N elements for storing the forward intra-grating layer
reflectances ρk+

and ρk− .

∗rhopp , ∗rhopm Pointers to arrays of N elements for storing the backward intra-grating layer
reflectances ρ′k+

and ρ′k−
.

For the definitions of the intra-grating layer reflectances and transmittances, see the separate section
Calculation of intra-grating layer reflectances.

〈Grating parameters 57 〉 ≡
long nn , modnum ;
double ll , ∗z, ∗dz , ∗n, ∗g, ∗pe , ∗pm , ∗qe , ∗qm , ∗etafp , ∗etafm , ∗etabp , ∗etabm ;
double ∗taup , ∗taum , ∗taupp , ∗taupm , ∗rhop , ∗rhom , ∗rhopp , ∗rhopm ;

This code is used in section 51.

52 DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM MAGBRAGG §58

58. Declaration of file pointers.

〈Declaration of file pointers 58 〉 ≡
FILE ∗fp s0 , ∗fp s1 , ∗fp s2 , ∗fp s3 ; /∗ Stokes parameters of incident wave ∗/
FILE ∗fp v0 , ∗fp v1 , ∗fp v2 , ∗fp v3 ; /∗ Stokes parameters of reflected wave ∗/
FILE ∗fp w0 , ∗fp w1 , ∗fp w2 , ∗fp w3 ; /∗ Stokes params. of transmitted wave ∗/
FILE ∗fp evo = Λ, ∗fp ievo = Λ, ∗fp spec = Λ, ∗fp traject = Λ;
FILE ∗fp irspec = Λ, ∗fp itspec = Λ, ∗fp icspec = Λ, ∗fp gr = Λ;
FILE ∗fp evo s0 = Λ, ∗fp evo s1 = Λ, ∗fp evo s2 = Λ, ∗fp evo s3 = Λ;
FILE ∗intensinfologfile = Λ;

This code is used in section 51.

59. Declaration of character strings holding file names. Generally in this program, the maximum number
of characters a file name string can contain is NCHMAX, as defined in the definitions section of the program.

〈Declaration of strings and file names 59 〉 ≡
char gratingtype [NCHMAX], gratingsubtype [NCHMAX];
char fieldevofilename [NCHMAX], intensityevofilename [NCHMAX];
char spectrumfilename [NCHMAX], trmtraject filename [NCHMAX];
char intensity reflection spectrumfilename [NCHMAX], intensity transmission spectrumfilename [NCHMAX],

intensity check spectrumfilename [NCHMAX];
char fieldevofilename s0 [NCHMAX], fieldevofilename s1 [NCHMAX], fieldevofilename s2 [NCHMAX],

fieldevofilename s3 [NCHMAX];
char intensinfologfilename [NCHMAX];
char outfilename [NCHMAX], gratingfilename [NCHMAX];
char outfilename s0 [NCHMAX], outfilename s1 [NCHMAX], outfilename s2 [NCHMAX], outfilename s3 [NCHMAX];
char outfilename v0 [NCHMAX], outfilename v1 [NCHMAX], outfilename v2 [NCHMAX], outfilename v3 [NCHMAX];
char outfilename w0 [NCHMAX], outfilename w1 [NCHMAX], outfilename w2 [NCHMAX], outfilename w3 [NCHMAX];

This code is used in section 51.

60. Declaration of dummy variables. Here dummy and temporary variables are declared, where the
“dummy” variables typically are integer counters for iteration over wavelength, ellipticity, intensity and
so on, while the temporary variables are internally used for in some cases saving computational time, and
also for the sake of increasing the readability of the program somewhat.

〈Declaration of local dummy variables 60 〉 ≡
dcomplex tmpfp , tmpfm , tmpbp , tmpbm ;
double tmp , zt , s0 , s1 , s2 , s3 , v0 , v1 , v2 , v3 , w0 , w1 , w2 , w3 , stn , maxintens = 0.0,

maxintens inintens = 0.0, maxintens inellip = 0.0, maxintens trintens = 0.0, maxintens trellip = 0.0;
int no arg , status = 0, tmpch ;
long j, k, ke , ki ;

This code is used in section 51.

§61 MAGBRAGG INITIALIZATION OF VARIABLES 53

61. Initialization of variables.

〈 Initialize variables 61 〉 ≡
trmtraject specified = 0; /∗ Is a trajectory of (W0,W3) specified? ∗/
intensityinfo = 0; /∗ Printing basic intensity info to stdout; default: off ∗/
saveintensityinfologfile = 0; /∗ Printing basic intensity info to file ∗/
randomdistribution = 0; /∗ Random shuffling of layers; default: off ∗/
writegratingtofile = 0; /∗ Save spatial grating structure; default: off ∗/
scale stokesparams = 0; /∗ Scale Stokes parameters by stoke scalefactor ; default: off ∗/
stoke scalefactor = 1.0; /∗ Scale factor to be used for Stokes parameters ∗/
normalize length to micrometer = 0;
normalize intensity = 0; /∗ Write normalized intensity to file; default: off ∗/
normalize ellipticity = 0; /∗ Ditto for the ellipticity ∗/
ranseed = 1097; /∗ Seed for random number generator ∗/
modnum = −1; /∗ If positive, the manually modified layer number ∗/
verbose = 0; /∗ Verbose mode is off by default ∗/
apodize = 0; /∗ Apodization is off by default ∗/
phasejump = 0; /∗ Discrete phase jump is off by default ∗/
normalize internally = 0; /∗ Default state of internal normalization is off ∗/
odd layer = 0; /∗ Counter flag for odd and even grating layers ∗/
chirpflag = 1;
save dbspectra = 0;
stokes parameter spectrum = 0;
display surrounding media = 1;
/∗ Append also the surrounding medium when saving the spatial grating profile to file; default: on ∗/

perturbed gyration constant = 0;
fieldevoflag = 0; /∗ Save spatial field distribution to file; default: off ∗/
fieldevoflag efield = 0; /∗ Save as complex electric field; default: off ∗/
fieldevoflag stoke = 0; /∗ Save as Stokes parameters; default: off ∗/
intensityevoflag = 0; /∗ Save spatial intensity distribution; default: off ∗/
mm = mmdef ; /∗ Number of sampling points in optical spectrum ∗/
nn = nndef ; /∗ Number of layer interfaces of grating; num of layers is nn-1 ∗/
mme = mmedef ; /∗ Number of sampling points in transmitted ellipticity ∗/
mmi = mmidef ; /∗ Number of sampling points in transmitted intensity ∗/
nne = 1; /∗ Default number extra, intra-layer sampling points ∗/
ll = lldef ; /∗ Default physical length of the grating structure ∗/
lambdastart = lambdastartdef ;
lambdastop = lambdastopdef ;
phasejumpangle = 0.0; /∗ Discrete phase jump is off by default ∗/
phasejumpposition = 0.0; /∗ Discrete phase jump is off by default ∗/
phi = 0.0; /∗ Discrete phase jump is off by default ∗/
nsurr = nsurrdef ; /∗ Default index of refraction of the surrounding medium ∗/
strcpy (outfilename , "out.stok"); /∗ Default output file basename ∗/
strcpy (fieldevofilename , "out.fevo.dat"); /∗ Default output file basename ∗/
strcpy (fieldevofilename s0 , "out.fevo.s0.dat");
strcpy (fieldevofilename s1 , "out.fevo.s1.dat");
strcpy (fieldevofilename s2 , "out.fevo.s2.dat");
strcpy (fieldevofilename s3 , "out.fevo.s3.dat");
strcpy (spectrumfilename , "out.rsp.dat"); /∗ Default output file name ∗/
strcpy (intensity reflection spectrumfilename , "out.irsp.dat");
strcpy (intensity transmission spectrumfilename , "out.trsp.dat");
strcpy (intensity check spectrumfilename , "out.chec.dat");
fp s0 = Λ;

54 INITIALIZATION OF VARIABLES MAGBRAGG §61

fp s1 = Λ;
fp s2 = Λ;
fp s3 = Λ;
fp v0 = Λ;
fp v1 = Λ;
fp v2 = Λ;
fp v3 = Λ;
fp w0 = Λ;
fp w1 = Λ;
fp w2 = Λ;
fp w3 = Λ;

This code is used in section 45.

§62 MAGBRAGG MEMORY ALLOCATION 55

62. Memory allocation. Allocate memory for the temporary storage of the spatial distribution of ma-
terial parameters of the grating structure and internal, complex-valued electromagnetic fields. In TEX-style
notation, the parameters are interpreted in terms of the optical and magneto-optical susceptibilities [Fredrik
Jonsson, The Nonlinear Optics of Magneto-Optic Media, PhD thesis (The Royal Institute of Technology,
Stockholm, 2000)] as follows, starting with the all-optical (electric-dipolar related) parameters

n[k] = nk = [1 + χ(ee)
xx]1/2,

pe [k] = χeeee
xxxx − χeeee

xyyx,

qe [k] = χeeee
xxxx + χeeee

xyyx,

where all susceptibilities of the right-hand sides are to be evaluated in the domains zk < z < zk+1,
k = 1, 2, . . . N − 1. In addition to the all-optical parameters, the magneto-optical (magnetic-dipolar related)
parameters are defined as

g[k] = gk = iχ(eem)
xyz Bz

0/(2nk),

pm [k] = i(χeeeem
xyyyz − χeeeem

xxxyz)B
z
0 ,

qm [k] = i(χeeeem
xyyyz + χeeeem

xxxyz)B
z
0 ,

using the same conventions of evaluation for the involved susceptibilities in the righ-hand sides. With these
definitions, the left circularly polarized (LCP) and right circularly polarized (RCP) modes that propagate
in the forward direction in the kth layer will experience the linear, field-independent refractive indices nk+

and nk− , respectively, with

nk+
= nk[1 + iχ(eem)

xyz Bz
0/(2n

2
k)] = nk + gk, (LCP)

nk− = nk[1− iχ(eem)
xyz Bz

0/(2n
2
k)] = nk − gk. (RCP)

For backward propagating light, the experienced indices of refraction are reversed, that is to say, backward
propagating left circularly polarized light experience n− as the refractive index, while the right circularly
polarized experience n+.
We here throughout adopt to common standard definition of circularly polarized light, that when looking

into an oncoming wave propagating in the positive z-direction, the vector of the LCP electric field component
Ef

+ of the wave describes counterclockwise motion, while it for the RCP field component Ef
− instead describes

clockwise motion. This convention conforms to the classical one as used in optics [J. D. Jackson, Classical
Electrodynamics (Wiley, New York, 1975); M. Born and E. Wolf, Principles of Optics (Cambridge University
Press, Cambridge, 1980)]. Similarly, by looking into an oncoming wave propagating in the negative z-
direction, the vector of the LCP electric field component Eb

+ describes counterclockwise motion, while it for
the RCP field component Eb

− describes clockwise motion.
In the following allocation of memory, the kth element of respective vector contains the numerical value

for the respective material parameter evaluated in the domain zk < z < zk+1, for k = 1, 2, . . . , N − 1, while
the vectors containing the electrical field components contain the respective component evaluated at the
“beginning” of respective layer, at z = z+k . From material parameters such as the linear refractive indices nk

and the magneto-optical gyration constants gk of the compound structure, derived numerical quantities, such
as the transmission coefficients τk± and τ ′k±

and the reflection coefficients ρk± and ρ′k±
across the interfaces

at zk, are later on calculated and stored in vectors that here are allocated.

〈Allocate optical field vectors 62 〉 ≡
{
z = dvector (1, nn); /∗ Spatial coordinate zk along the Bragg grating ∗/
dz = dvector (1, nn − 1); /∗ dz [k] ≡ z[k + 1]− z[k], k = 1, 2, ..., nn − 1 ∗/
efp = dcvector (0, nn); /∗ Equals Ef

k+
in TEX-style notation ∗/

efm = dcvector (0, nn); /∗ Equals Ef
k−

in TEX-style notation ∗/
ebp = dcvector (0, nn); /∗ Equals Eb

k+
in TEX-style notation ∗/

56 MEMORY ALLOCATION MAGBRAGG §62

ebm = dcvector (0, nn); /∗ Equals Eb
k−

in TEX-style notation ∗/
taup = dvector (1, nn); /∗ Forward LCP transmission coefficient τk+

∗/
taum = dvector (1, nn); /∗ Forward RCP transmission coefficient τk+

∗/
taupp = dvector (1, nn); /∗ Backward LCP transmission coeff. τ ′k+

∗/
taupm = dvector (1, nn); /∗ Backward RCP transmission coeff. τ ′k−

∗/
rhop = dvector (1, nn); /∗ Forward LCP reflection coeff. ρk+

∗/
rhom = dvector (1, nn); /∗ Forward RCP reflection coeff. ρk− ∗/
rhopp = dvector (1, nn); /∗ Backward LCP reflection coeff. ρ′k+

∗/
rhopm = dvector (1, nn); /∗ Backward RCP reflection coeff. ρ′k−

∗/
n = dvector (0, nn); /∗ Linear electric-dipolar refractive index n(z) ∗/
g = dvector (0, nn); /∗ Linear magneto-optical contribution to n(z) ∗/
pe = dvector (1, nn − 1); /∗ Nonlinear all-optical contribution to n(z) ∗/
pm = dvector (1, nn − 1); /∗ Nonlinear magneto-optical contribution to n(z) ∗/
qe = dvector (1, nn − 1); /∗ Nonlinear all-optical contribution to n(z) ∗/
qm = dvector (1, nn − 1); /∗ Nonlinear magneto-optical contribution to n(z) ∗/
etafp = dvector (1, nn − 1); /∗ Nonlinear LCP forward contribution to n(z) ∗/
etabp = dvector (1, nn − 1); /∗ Nonlinear LCP backward contribution to n(z) ∗/
etafm = dvector (1, nn − 1); /∗ Nonlinear RCP forward contribution to n(z) ∗/
etabm = dvector (1, nn − 1); /∗ Nonlinear RCP backward contribution to n(z) ∗/
}

This code is used in section 45.

§63 MAGBRAGG MEMORY ALLOCATION 57

63. At the end of the program, we would also like to properly deallocate the memory occupied by the
previously allocated real- and complex-valued vectors that have been used in the simulation. This is done
by executing the following block.

〈Deallocate optical field vectors 63 〉 ≡
{
free dcvector (efp , 0, nn);
free dcvector (efm , 0, nn);
free dcvector (ebp , 0, nn);
free dcvector (ebm , 0, nn);
free dvector (taup , 1, nn);
free dvector (taum , 1, nn);
free dvector (taupp , 1, nn);
free dvector (taupm , 1, nn);
free dvector (rhop , 1, nn);
free dvector (rhom , 1, nn);
free dvector (rhopp , 1, nn);
free dvector (rhopm , 1, nn);
free dvector (n, 0, nn);
free dvector (g, 0, nn);
free dvector (pe , 1, nn − 1);
free dvector (pm , 1, nn − 1);
free dvector (qe , 1, nn − 1);
free dvector (qm , 1, nn − 1);
free dvector (etafp , 1, nn − 1);
free dvector (etabp , 1, nn − 1);
free dvector (etafm , 1, nn − 1);
free dvector (etabm , 1, nn − 1);
if (trmtraject specified) {
free dvector (w0traj , 1,mmtraject);
free dvector (w3traj , 1,mmtraject);
}
}

This code is used in section 45.

58 INITIALIZATION OF THE GRATING STRUCTURE MAGBRAGG §64

64. Initialization of the grating structure. Using the previously allocated memory for the temporary
storage of the spatially distributed grating structure, initiate the material parameters of the interior of
the grating. If the user via the command line options has specified that a perturbation of the gyration
constant should be present somewhere along the grating, then add a perturbation in the functional form of
a magneto-optical effect that would arise due to a current carrying wire, placed orthogonal to the direction
of propagation, and in a close vicinity of the medium.

〈 Initiate grating structure 64 〉 ≡
{
if (¬strcmp(gratingtype , "stepwise")) {
〈 Initiate binary grating structure 65 〉;
}
else if (¬strcmp(gratingtype , "sinusoidal")) {
〈 Initiate sinusoidal grating structure 66 〉;
}
else if (¬strcmp(gratingtype , "chirped")) {
〈 Initiate chirped grating structure 67 〉;
}
else if (¬strcmp(gratingtype , "fractal")) {
〈 Initiate fractal grating structure 68 〉;
}
else {
fprintf (stderr , "%s: Error: Specified grating type is invalid.\n", progname);
showsomehelp ();
exit (FAILURE);
}
if (perturbed gyration constant) {
〈Add perturbation of gyration constant along grating structure 69 〉;
}
}

This code is used in section 45.

§65 MAGBRAGG INITIALIZATION OF THE GRATING STRUCTURE 59

65. For the binary type of stepwise gratings, with the refractive index and all other material parameters
of the medium spatially alternating between two distinct values, the odd layers (i.e. zk < z < zk+1, with
k being an odd integer) have all the layer thickness given by the parameter t1 , while all even layers (i.e.
zk < z < zk+1, with k being an even integer) have the layer thickness given by t2 . This means that in this
case the total length of the grating is given as

L = {the number of odd layers} × t1 + {the number of even layers} × t2 ,

and hence the value of any specified grating length (by using the −−gratinglength option) will be neglected
for the twolevel stepwise type of grating.
The material parameters pe , qe , pm , and qm , are (as previously) defined as

pe [k] = χeeee
xxxx(−ω;ω, ω,−ω)− χeeee

xyyx(−ω;ω, ω,−ω),
qe [k] = χeeee

xxxx(−ω;ω, ω,−ω) + χeeee
xyyx(−ω;ω, ω,−ω),

pm [k] = i(χeeeem
xyyyz(−ω;ω, ω,−ω, 0)− χeeeem

xxxyz(−ω;ω, ω,−ω, 0))Bz
0 ,

qm [k] = i(χeeeem
xyyyz(−ω;ω, ω,−ω, 0) + χeeeem

xxxyz(−ω;ω, ω,−ω, 0))Bz
0 ,

where χeeee
µαβγ(−ω;ω, ω,−ω) and χeeeem

µαβγδ(−ω;ω, ω,−ω, 0) are the nonlinear optical and magneto-optical sus-
ceptibility tensors governing the intensity-dependent refractive index and Faraday effect, respectively, taken
in a notation conforming to P. N. Butcher and D. Cotter [P. N. Butcher and D. Cotter, The Elements of

Nonlinear Optics (Cambridge University Press, New York, 1990)], and to be evaluated in respective layer
zk < z < zk+1, k = 1, 2, . . . , N − 1.
When initializing the binary type of stepwise gratings, the program will check if the randomdistribution flag

(a numerical integer) was set through the command line parameters. If so (i. e. if randomdistribution = 1),
then the layers of different indices and material parameters will be randomly ordered.

〈 Initiate binary grating structure 65 〉 ≡
{
if (¬strcmp(gratingsubtype , "twolevel")) {
if (randomdistribution) {
for (j = 1; j ≤ nn − 1; j++) {
if (j ≡ modnum) {
if (j ≡ 1) z[j] = 0.0;
z[j + 1] = z[j] +modt1 ;
dz [j] = modt1 ;
n[j] = modn1 ;
g[j] = modg1 ;
pe [j] = modpe1 ;
pm [j] = modpm1 ;
qe [j] = modqe1 ;
qm [j] = modqm1 ;
}
else {
ranseed = ranseed + j;
if (ran1 (&ranseed) > 0.5) {
if (verbose) fprintf (stdout , "Random number: 1\n");
if (j ≡ 1) z[j] = 0.0;
z[j + 1] = z[j] + t1 ;
dz [j] = t1 ;
n[j] = n1 ;
g[j] = g1 ;
pe [j] = pe1 ;

60 INITIALIZATION OF THE GRATING STRUCTURE MAGBRAGG §65

pm [j] = pm1 ;
qe [j] = qe1 ;
qm [j] = qm1 ;
}
else {
if (verbose) fprintf (stdout , "Random number: 0\n");
if (j ≡ 1) z[j] = 0.0;
z[j + 1] = z[j] + t2 ;
dz [j] = t2 ;
n[j] = n2 ;
g[j] = g2 ;
pe [j] = pe2 ;
pm [j] = pm2 ;
qe [j] = qe2 ;
qm [j] = qm2 ;
}
}
}
}
else { /∗ else, if non-random distribution ∗/
if (modnum < 0) { /∗ if no modified layer of the grating, ... ∗/
for (j = 1; j ≤ nn − 1; j = j + 2) { /∗ all odd layers, j = 1, 3, 5, . . . ∗/
z[j] = 0.5 ∗ ((double)(j − 1)) ∗ (t1 + t2);
dz [j] = t1 ;
n[j] = n1 ;
g[j] = g1 ;
pe [j] = pe1 ;
pm [j] = pm1 ;
qe [j] = qe1 ;
qm [j] = qm1 ;
if (j ≡ nn − 1) z[nn] = z[nn − 1] + t1 ;
}
for (j = 2; j ≤ nn − 1; j = j + 2) { /∗ all even layers, j = 2, 4, 6, . . . ∗/
z[j] = z[j − 1] + t1 ;
dz [j] = t2 ;
n[j] = n2 ;
g[j] = g2 ;
pe [j] = pe2 ;
pm [j] = pm2 ;
qe [j] = qe2 ;
qm [j] = qm2 ;
if (j ≡ nn − 1) z[nn] = z[nn − 1] + t2 ;
}
}
else { /∗ ... else, if at least one modified layer of the grating ∗/
for (j = 1; j ≤ nn − 1; j++) {
if (j ≡ 1) z[j] = 0.0;
if (j ≡ modnum) { /∗ the modified layer ∗/
z[j + 1] = z[j] +modt1 ;
dz [j] = modt1 ;
n[j] = modn1 ;
g[j] = modg1 ;

§65 MAGBRAGG INITIALIZATION OF THE GRATING STRUCTURE 61

pe [j] = modpe1 ;
pm [j] = modpm1 ;
qe [j] = modqe1 ;
qm [j] = modqm1 ;
}
else {
tmp = ((double) j)/((double) 2);
if (tmp − floor (tmp) > 0.25) { /∗ if j odd ∗/
z[j + 1] = z[j] + t1 ;
dz [j] = t1 ;
n[j] = n1 ;
g[j] = g1 ;
pe [j] = pe1 ;
pm [j] = pm1 ;
qe [j] = qe1 ;
qm [j] = qm1 ;
}
else { /∗ if j even ∗/
z[j + 1] = z[j] + t2 ;
dz [j] = t2 ;
n[j] = n2 ;
g[j] = g2 ;
pe [j] = pe2 ;
pm [j] = pm2 ;
qe [j] = qe2 ;
qm [j] = qm2 ;
}
}
}
}
}
}
else {
fprintf (stderr , "%s: Error.\n", progname);
fprintf (stderr , "%s: (No valid grating subtype found).\n", progname);
exit (FAILURE);
}
}

This code is used in section 64.

62 INITIALIZATION OF THE GRATING STRUCTURE MAGBRAGG §66

66. For the sinusoidal type gratings, the grating structure is spatially oversampled and modelled as a large
number of thin homogeneous slices, as in the oversampling in some algorithms for calculation of transmission
properties of fiber Bragg gratings. In the oversampling, the thickness of each of the layers is equal, using an
equidistanly spaced spatial increment in the beam propagation performed across each of the layers. Here,
nper is the physical, spatial period of the refractive index distribution n(z), while gper is the spatial period
of the linear magneto-optical gyration constant g(z), etc.
For sinusoidal type gratings, any stated apodization profile will also be applied, in order to get rid of any

occurring Gibbs oscillations due to a rapid change of the index modulation at the ends of the grating. From
a user perspective, the −−apodize option is used at startup time of the program for specifying a smoother
transition between modulated and non-modulated regions of the grating. The apodization is performed at
the ends of the grating according to a multiplicative factor of the n2 and g2 modulation amplitudes of the
refractive index and gyration coefficient, of the form

f(z) =

{
[1− cos(πz/a)]/2, 0 ≤ z ≤ a,

1, a < z < L− a,
[1− cos(π(z − L)/a)]/2, L− a ≤ z ≤ L,

and otherwise f(z) = 0, for any z outside the above domains of definition, where a is the effective
apodization length, being the floating point parameter specified after the −−apodize option, and L as
usual the geometrical overall length of the grating.
In the generation of the sinusoidal grating structure, we also include any possible discrete spatial phase

jump, as specified by the −−phasejump command line option.

〈 Initiate sinusoidal grating structure 66 〉 ≡
{
t1 = ll /((double)(nn − 1));
for (j = 1; j ≤ nn − 1; j++) {
z[j] = ((double)(j − 1)) ∗ t1 ;
dz [j] = t1 ;
if (apodize) {
if ((0.0 ≤ z[j]) ∧ (z[j] ≤ apolength)) {
tmp = (1.0− cos (pi ∗ z[j]/apolength))/2.0;
}
else if ((apolength ≤ z[j]) ∧ (z[j] ≤ ll − apolength)) {
tmp = 1.0;
}
else if ((ll − apolength ≤ z[j]) ∧ (z[j] ≤ ll)) {
tmp = (1.0− cos (pi ∗ (z[j]− ll)/apolength))/2.0;
}
else {
tmp = 0.0;
fprintf (stderr , "%s: Impossible apodization event occurred.", progname);
fprintf (stderr , "%s: (Please check grating initialization.)", progname);
}
}
if (phasejump) {
if (z[j] ≥ phasejumpposition) {
phi = phasejumpangle ;
}
else {
phi = 0.0;
}
}

§66 MAGBRAGG INITIALIZATION OF THE GRATING STRUCTURE 63

if (apodize) {
n[j] = n1 + n2 ∗ tmp ∗ sin (twopi ∗ z[j]/nper + phi);
g[j] = g1 + g2 ∗ tmp ∗ sin (twopi ∗ z[j]/gper + phi);
}
else {
n[j] = n1 + n2 ∗ sin (twopi ∗ z[j]/nper + phi);
g[j] = g1 + g2 ∗ sin (twopi ∗ z[j]/gper + phi);
}
pe [j] = pe1 + pe2 ∗ sin (twopi ∗ z[j]/peper);
pm [j] = pm1 + pm2 ∗ sin (twopi ∗ z[j]/pmper);
qe [j] = qe1 + qe2 ∗ sin (twopi ∗ z[j]/qeper);
qm [j] = qm1 + qm2 ∗ sin (twopi ∗ z[j]/qmper);
}
z[nn] = ll ;
}

This code is used in section 64.

64 INITIALIZATION OF THE GRATING STRUCTURE MAGBRAGG §67

67. Just as for the sinusoidal type gratings, the chirped grating structure is spatially oversampled and
modelled as a large number of thin homogeneous slices of equal thickness. As in the case of a pure sinusoidal
grating, we here also check whether an apodization should be applied to the grating profile, subsequently
applying the apodization. In the generation of the chirped grating structure, we also include any possible
discrete spatial phase jump, as specified by the −−phasejump command line option.

〈 Initiate chirped grating structure 67 〉 ≡
{
t1 = ll /((double)(nn − 1));
for (j = 1; j ≤ nn − 1; j++) {
z[j] = ((double)(j − 1)) ∗ t1 ;
dz [j] = t1 ;
if (apodize) {
if ((0.0 ≤ z[j]) ∧ (z[j] ≤ apolength)) {
tmp = (1.0− cos (pi ∗ z[j]/apolength))/2.0;
}
else if ((apolength ≤ z[j]) ∧ (z[j] ≤ ll − apolength)) {
tmp = 1.0;
}
else if ((ll − apolength ≤ z[j]) ∧ (z[j] ≤ ll)) {
tmp = (1.0− cos (pi ∗ (z[j]− ll)/apolength))/2.0;
}
else {
tmp = 0.0;
fprintf (stderr , "%s: Impossible apodization event occurred.", progname);
fprintf (stderr , "%s: (Please check grating initialization.)", progname);
}
}
if (phasejump) {
if (z[j] ≥ phasejumpposition) {
phi = phasejumpangle ;
}
else {
phi = 0.0;
}
}
if (apodize) {
if (fabs (ncrp) > 0.0) /∗ if nonzero chirp of n(z) ∗/
n[j] = n1 + n2 ∗ tmp ∗ sin ((twopi/ncrp) ∗ log (1.0 + ncrp ∗ z[j]/nper) + phi);

else n[j] = n1 + n2 ∗ tmp ∗ sin (twopi ∗ z[j]/nper + phi);
if (fabs (gcrp) > 0.0) /∗ if nonzero chirp of g(z) ∗/
g[j] = g1 + g2 ∗ tmp ∗ sin ((twopi /gcrp) ∗ log (1.0 + gcrp ∗ z[j]/gper) + phi);

else g[j] = g1 + g2 ∗ tmp ∗ sin (twopi ∗ z[j]/gper + phi);
}
else {
if (fabs (ncrp) > 0.0) /∗ if nonzero chirp of n(z) ∗/
n[j] = n1 + n2 ∗ sin ((twopi /ncrp) ∗ log (1.0 + ncrp ∗ z[j]/nper) + phi);

else n[j] = n1 + n2 ∗ sin (twopi ∗ z[j]/nper + phi);
if (fabs (gcrp) > 0.0) /∗ if nonzero chirp of g(z) ∗/
g[j] = g1 + g2 ∗ sin ((twopi/gcrp) ∗ log (1.0 + gcrp ∗ z[j]/gper) + phi);

else g[j] = g1 + g2 ∗ sin (twopi ∗ z[j]/gper + phi);
}
if (fabs (pecrp) > 0.0) /∗ if nonzero chirp of pe(z) ∗/

§67 MAGBRAGG INITIALIZATION OF THE GRATING STRUCTURE 65

pe [j] = pe1 + pe2 ∗ sin ((twopi /pecrp) ∗ log (1.0 + pecrp ∗ z[j]/peper));
else pe [j] = pe1 + pe2 ∗ sin (twopi ∗ z[j]/peper);
if (pmcrp ∗ pmcrp > 0.0) /∗ if nonzero chirp of pm(z) ∗/
pm [j] = pm1 + pm2 ∗ sin ((twopi/pmcrp) ∗ log (1.0 + pmcrp ∗ z[j]/pmper));

else pm [j] = pm1 + pm2 ∗ sin (twopi ∗ z[j]/pmper);
if (fabs (qecrp) > 0.0) /∗ if nonzero chirp of qe(z) ∗/
qe [j] = qe1 + qe2 ∗ sin ((twopi /qecrp) ∗ log (1.0 + qecrp ∗ z[j]/qeper));

else qe [j] = qe1 + qe2 ∗ sin (twopi ∗ z[j]/qeper);
if (fabs (qmcrp) > 0.0) /∗ if nonzero chirp of qm(z) ∗/
qm [j] = qm1 + qm2 ∗ sin ((twopi /qmcrp) ∗ log (1.0 + qmcrp ∗ z[j]/qmper));

else qm [j] = qm1 + qm2 ∗ sin (twopi ∗ z[j]/qmper);
}
z[nn] = ll ;
}

This code is used in section 64.

66 INITIALIZATION OF THE GRATING STRUCTURE MAGBRAGG §68

68. For the fractal type gratings, the grating structure is composed of a self-similar structure with certain
scaling properties. Currently only the Cantor-type fractal is possible to apply to the grating structure.
The initialization of the Cantor-type grating is performed by one single call to init cantor fractal grating (),

which intiates the positions zk at which the interfaces between media of different properties are located. The
init cantor fractal grating () routine then makes recursive calls to itself, until the bottom level of the fractal
initialization is reached. After this, the material parameters of these regions are set sequentially in the same
way as for binary type gratings.
In the initialization of the Cantor-type fractal grating, the program uses the vector z[1..N] with upper

bound determined by the ‘level’ p of the fractal as N = 2p. The value of N is calculated and set immediately
after the program has parsed the level from the command line options, and hence any additional specifications
of N are superfluous, as this is set by the fractal level. If the number of elements in z is not an integer power
of two, then the call to init cantor fractal grating () will fail, leaving the error message of this routine on
exit. This will happen if, for example, a command line option specifying N appears after the specification
of the fractal type grating, if the specified value for N does not conform with the convention that N = 2p.

〈 Initiate fractal grating structure 68 〉 ≡
{
tmp = 1.0;
for (j = 1; j ≤ fractal level − 1; j++) tmp = 2.0 ∗ tmp ;
for (j = 1; j ≤ maximum fractal level − fractal level ; j++) tmp = 3.0 ∗ tmp ;

/∗ leaves tmp = 2(p− 1)3(pmax − p) ∗/
ll = tmp ∗ t1 − tmp ∗ t2 ;
tmp = 1.0;
for (j = 1; j ≤ maximum fractal level − 1; j++) tmp = 3.0 ∗ tmp ;
ll = ll + tmp ∗ t2 ;
if (verbose) {
fprintf (stdout , "%s: Minimum layer thickness at maximum recursion depth:\n", progname);
fprintf (stdout , "%s: t2=%f [nm]\n", progname , t1 ∗ 1.0 · 109);
fprintf (stdout , "%s: t2=%f [nm]\n", progname , t2 ∗ 1.0 · 109);
fprintf (stdout , "%s: Fractal grating length calculated as L=%e [m]\n", progname , ll);
fprintf (stdout , "%s: Based on fractal recursion of %d out of a maximum of %d levels.\n",

progname , fractal level ,maximum fractal level);
}
init cantor fractal grating (z, 1, nn , 0.0, ll , n1 , n2);
for (j = 1; j ≤ nn − 1; j++) {
dz [j] = z[j + 1]− z[j];
if (j ≡ 1) {
odd layer = 1;
}
else {
odd layer = (odd layer ? 0 : 1);
}
n[j] = (odd layer ? n1 : n2);
g[j] = (odd layer ? g1 : g2);
pe [j] = (odd layer ? pe1 : pe2);
pm [j] = (odd layer ? pm1 : pm2);
qe [j] = (odd layer ? qe1 : qe2);
qm [j] = (odd layer ? qm1 : qm2);
}
}

This code is used in section 64.

§69 MAGBRAGG INITIALIZATION OF THE GRATING STRUCTURE 67

69. Adding any present perturbation of gyration constant. If the user via the command line has specified
that a perturbation of the gyration constant should be added to the present spatial distribution, then
perturbed gyration constant will be set to unity (true), and a perturbation of the profile corresponding to
the magnetic field strength of a current carrying wire, orthogonal to the direction of propagation of light,
will be added. The added perturbation ∆g(z) will be a “bump” of the Lorentzian spatial shape

∆g(z) =
ap

1 + 4(z − zp)2/w2
p

,

where zp is the position, ap is the zero-to-peak amplitude, and wp the full width half maximum of the
perturbation. This form of perturbation applied to chirped sinusoidal magneto-optical Bragg gratings has in
a linear optical regime been analyzed for spectral windowing and filtering, in [F. Jonsson and C. Flytzanis,
JOSAB (2005); F. Jonsson and C. Flytzanis, Proc. MRS Fall meeting (2005)].

〈Add perturbation of gyration constant along grating structure 69 〉 ≡
{
for (j = 1; j ≤ nn − 1; j++) {
tmp = 2.0 ∗ (z[j]− gyroperturb position)/gyroperturb width ;
g[j] += gyroperturb amplitude/(1.0 + tmp ∗ tmp);
}
}

This code is used in section 64.

70. Set the refractive index of the medium surrounding the magneto-optical Bragg grating. The first and
last elements of the double vectors n[0, nn] and g[0, nn] are defined according to the convention

n[0] ≡ n(z−0), n[nn] ≡ n(z+N),

g[0] ≡ g(z−0), g[nn] ≡ g(z+N),

and the surrounding medium is here assumed to be linear,

pe,m(z
−
0) = pe,m(z

+
N) = qe,m(z

−
0) = qe,m(z

+
N) = 0,

and non-gyrotropic (g0 = gN = 0).

〈 Initiate surrounding medium 70 〉 ≡
{
n[0] = nsurr ; /∗ n(z−0) ∗/
n[nn] = nsurr ; /∗ n(z+N) ∗/
g[0] = 0.0; /∗ g(z−0) ∗/
g[nn] = 0.0; /∗ g(z+N) ∗/
}

This code is used in section 45.

68 CALCULATION OF INTRA-GRATING LAYER REFLECTANCES MAGBRAGG §71

71. Calculation of intra-grating layer reflectances. Calculate the intrinsic reflectances over the
layer interfaces prior to entering the algorithm of calculation of field distributions or reflection and trans-
mission coefficients. The reflectance and transmission coefficients across the layers are calculated in terms
of their linear optical and magneto-optical material parameters as

taup[j] = τ+(zj) =
2(nj−1 + gj−1)

(nj−1 + nj + gj−1 + gj)
, taum[j] = τ−(zj) =

2(nj−1 − gj−1)

(nj−1 + nj − gj−1 − gj)
,

taupp[j] = τ ′+(zj) =
2(nj − gj)

(nj−1 + nj − gj−1 − gj)
, taupm[j] = τ ′−(zj) =

2(nj + gj)

(nj−1 + nj + gj−1 + gj)
,

rhop[j] = ρ+(zj) =
(nj−1 − nj + gj−1 − gj)
(nj−1 + nj + gj−1 + gj)

, rhom[j] = ρ−(zj) =
(nj−1 − nj − gj−1 + gj)

(nj−1 + nj − gj−1 − gj)
,

rhopp[j] = ρ′+(zj) = −ρ−(zj), rhopm[j] = ρ′−(zj) = −ρ+(zj),

for interface z = zj , j = 1, 2, . . . , nn , where nj and gj are the respective refractive indices and gyration
constants of the layers zj < z < zj+1. Outside the grating a zero gyration coefficient is assumed while the
refractive indices are specified by n0 = nN = nsurr , as given through the command line options.
In these expressions, τ±(zj) are the layer reflectances for forward propagating left/right circularly polarized

light (i. e. for light coming from the negative z-direction), while τ ′±(zj) are the layer reflectances for backward
propagating left/right circularly polarized light (i. e. for light coming from the positive z-direction).
These polarization selective amplitude reflectances satisfy the Stokes relations

ρ±(zj) = −ρ′∓(zj), τ±(zj)τ
′
∓(zj) = 1− ρ2±(zj),

in this particular case generalized to interfaces between magneto-optic media. Notice the reversed order of
the subscripts of the reflectances in the Stokes relations, reflecting the nonreciprocity of the magneto-optical
contributions to the refractive index.

〈Calculate intragrating layer reflectances 71 〉 ≡
{
for (j = 1; j ≤ nn ; j++) {
taup [j] = 2.0 ∗ (n[j − 1] + g[j − 1])/(n[j − 1] + n[j] + g[j − 1] + g[j]);
taum [j] = 2.0 ∗ (n[j − 1]− g[j − 1])/(n[j − 1] + n[j]− g[j − 1]− g[j]);
taupp [j] = 2.0 ∗ (n[j]− g[j])/(n[j − 1] + n[j]− g[j − 1]− g[j]);
taupm [j] = 2.0 ∗ (n[j] + g[j])/(n[j − 1] + n[j] + g[j − 1] + g[j]);
rhop [j] = (n[j − 1]− n[j] + g[j − 1]− g[j])/(n[j − 1] + n[j] + g[j − 1] + g[j]);
rhom [j] = (n[j − 1]− n[j]− g[j − 1] + g[j])/(n[j − 1] + n[j]− g[j − 1]− g[j]);
rhopp [j] = −rhom [j];
rhopm [j] = −rhop [j];
}
}

This code is used in section 45.

§72 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 69

72. Calculating the electrical field distribution inside the grating. Having constructed all data
needed for the analysis of optical wave propagation in the grating structure, in linear as well as nonlinear,
all-optically as well as magneto-optically, we are now in position of entering the actual electromagnetic field
calculations. The field calculation is performed for a set of vacuum wavelengths within the spectral range
specified by lambdastart and lambdastop . The spectrum is sampled using equidistantly spaced wavelength
increments.
If the user instead of stating equidistantly spaced transmitted intensities and ellipticities has specified

a file where to find the trajectory of Stokes parameters (W0,W3) for the transmitted light, by using the
−−trmtraject option, then mme is set to be equal to the number of points mmtraject on this trajectory,
andmmi set to one. For this case, for every value of ke = 1, 2, 3, . . . ,mme , the trmintensity and trmellipticity

variables will be set according to the data supplied in the specified trajectory file.

〈Calculate incident optical field spectrum 72 〉 ≡
{
for (k = 1; k ≤ mm ; k++) { /∗ for all wavelengths in the spectrum window ∗/
if (mm > 1) { /∗ if more than one sampling point in the spectrum ∗/
lambda = lambdastart + (((double)(k − 1))/((double)(mm − 1))) ∗ (lambdastop − lambdastart);
}
else {
lambda = lambdastart ;
}
omega = twopi ∗ c/lambda ; /∗ angular frequency of the light ∗/
if (trmtraject specified) {
mme = mmtraject ;
mmi = 1;
}
〈Scan transmitted optical field in ellipticity and intensity 74 〉;
}
if (verbose) 〈Display elapsed execution time 73 〉;
}

This code is used in section 45.

73. Display the total execution time consumed by the simulation. This is the last block to be executed by
the program, and employs the difftime routine of the standard C library time.h.

〈Display elapsed execution time 73 〉 ≡
{
fprintf (stdout , " ...done. ");
now = time (Λ);
fprintf (stdout , "Elapsed execution time: %d s\n", ((int) difftime (now , initime)));
for (k = 1; k ≤ 64; k++) fprintf (stdout , (k < 64 ? "−" : "\n"));
fprintf (stdout , "Program execution closed %s", ctime (&now));
}

This code is used in section 72.

70 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §74

74. For a specified range of the intensity and ellipticity of polarization state of the transmitted optical
field, calculate the corresponding incident fields in this inverse formulation of the electromagnetic wave
propagation problem. The range of the ellipticity εT of the polarization state of the transmitted optical field
is given as

εT ∈ [trmellipstart , trmellipstop],

where trmellipstart and trmellipstop are the parameters provided at startup of the program through the
command line option −−trmellipticity 〈trmellipstart 〉 〈trmellipstop〉 〈mme 〉. Via the definition of the
normalized ellipticity εT, the trmellipstart and trmellipstop parameters are bound to

−1 ≤ trmellipstart ≤ trmellipstop ≤ 1.

〈Scan transmitted optical field in ellipticity and intensity 74 〉 ≡
{
for (ke = 1; ke ≤ mme ; ke++) {
if (trmtraject specified) {
trmellipticity = w3traj [ke]/w0traj [ke];
}
else {
if (mme > 1) {
trmellipticity = trmellipstart + (((double)(ke − 1))/((double)(mme − 1))) ∗ (trmellipstop −

trmellipstart);
}
else {
trmellipticity = trmellipstart ;
}
}
〈Scan transmitted optical field in intensity 75 〉;
}
}

This code is used in section 72.

§75 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 71

75. For a specified range of the intensity of the transmitted optical field, calculate the corresponding
incident fields in this inverse formulation of the electromagnetic wave propagation problem. The range of
the intensity IT of the transmitted optical field is given as

IT ∈ [trmintenstart , trmintenstop],

where trmintenstart and trmintenstop are the parameters provided at startup of the program through the
command line option −−trmintensity 〈trmintenstart 〉 〈trmintenstop 〉 〈mmi 〉.
〈Scan transmitted optical field in intensity 75 〉 ≡
{
for (ki = 1; ki ≤ mmi ; ki ++) {
if (trmtraject specified) {
trmintensity = (epsilon0 ∗ c/2.0) ∗ w0traj [ke];
}
else {
if (mmi > 1) {
trmintensity = trmintenstart + (((double)(ki − 1))/((double)(mmi − 1))) ∗ (trmintenstop −

trmintenstart);
}
else {
trmintensity = trmintenstart ;
}
}
〈Set boundary conditions at end of grating 76 〉;
〈Calculate optical field in last layer of the grating 77 〉;
〈Propagate optical fields from last to first layer of the grating 78 〉;
〈Write Stokes parameters and reflection coefficients to file 83 〉;
〈Write intragrating field evolution to file 84 〉;
〈Write intragrating intensity evolution to file 85 〉;
〈Write spatial grating structure to file 86 〉;
}
}

This code is used in section 74.

72 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §76

76. In this inverse formulation of the algorithm, apply the boundary condition that the backward propa-
gating wave at the end of the grating is zero,

Eb
N±

(zN) ≡ Eb
±(z

+
N) = 0,

and that the forward propagating field is a given quantity, specified in terms of intensity and ellipticity of
the polarization state, as

Ef
N+

(zN) ≡ Ef
+(z

+
N) = [(1 + εT)IT/(ε0c)]

1/2 ,

Ef
N−

(zN) ≡ Ef
−(z

+
N) = [(1− εT)IT/(ε0c)]1/2 ,

with values of transmitted intensity and ellipticity in the range specified by parameters parsed from the
command line options, supplied during startup of the program. Here the transmitted intensity IT (in the
program described by the variable trmintensity) is expressed in regular SI units, in W/m2 (Watts per square
meter), as

IT = (cε0/2)(|Ef
+(z

+
N)|2 + |Ef

−(z
+
N)|2),

and the normalized transmitted ellipticity εT of the transmitted polarization state (in the program described
by the variable trmellipticity)

εT =
|Ef

+(z
+
N)|2 − |Ef

−(z
+
N)|2

|Ef
+(z

+
N)|2 + |Ef

−(z
+
N)|2

,

is a number in the range from −1 to 1, with −1 corresponding to right circularly polarized (RCP), 0 to
linearly polarized, and 1 left circularly polarized (LCP) light.

〈Set boundary conditions at end of grating 76 〉 ≡
{
ebp [nn] = complex (0.0, 0.0);
ebm [nn] = complex (0.0, 0.0);
efp [nn] = complex (sqrt ((1.0 + trmellipticity) ∗ trmintensity/(c ∗ epsilon0)), 0.0);
efm [nn] = complex (sqrt ((1.0− trmellipticity) ∗ trmintensity/(c ∗ epsilon0)), 0.0);
}

This code is used in section 75.

77. Having applied the boundary conditions at the end of the grating, calculate the optical fields in the
last layer, for which j = N − 1. These fields are taken immediately next to the last interface, at z = z−N .

〈Calculate optical field in last layer of the grating 77 〉 ≡
{
efp [nn − 1] = cmul (crdiv (efp [nn], taup [nn]), crexpi (−omega ∗ n[nn − 1] ∗ dz [nn − 1]/c));
efm [nn − 1] = cmul (crdiv (efm [nn], taum [nn]), crexpi (−omega ∗ n[nn − 1] ∗ dz [nn − 1]/c));
ebp [nn − 1] = cmul (rcmul (rhom [nn], efm [nn − 1]), crexpi (2.0 ∗ omega ∗ n[nn − 1] ∗ dz [nn − 1]/c));
ebm [nn − 1] = cmul (rcmul (rhop [nn], efp [nn − 1]), crexpi (2.0 ∗ omega ∗ n[nn − 1] ∗ dz [nn − 1]/c));
}

This code is used in section 75.

§78 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 73

78. Given the right and left circularly polarized components of the forward and backward propagating
optical fields in the last layer, iterate the propagation over the whole grating structure in order to find the
corresponding input optical fields. This is done in an iterative manner over all the layers zj , starting with the
last layer (for which j = N − 1) and ending up at the first layer (for which j = 1), successively propagating
the optical field over one layer at the time.
As we enter the loop in the order j = N−1, N−2, ..., 1, the forward and backward propagating optical field

components immediately to the “left” of zj+1 are contained in the complex vector elements efp [j], efm [j],
ebp [j], and ebm [j], with

efp [j] = Ef
j+
(z−j+1), efm [j] = Ef

j−
(z−j+1), ebp [j] = Eb

j+
(z−j+1), ebm [j] = Eb

j−
(z−j+1),

where z = z−j denotes the position immediately to the “left” of z = zj . We will now propagate the fields from
zj+1 to zj , for j = N−1, N−2, ..., 1 (in that order), by first calculating the nonlinear (optical field-dependent)
propagation constants of the current layer zj < z < zj+1.
This block of code also deals with displaying information on the progress of calculation, using the standard

ANSI C time library for the calculation of “estimated time of arrival” (ETA) for the finishing of execution.

〈Propagate optical fields from last to first layer of the grating 78 〉 ≡
{
for (j = nn − 1; j ≥ 1; j−−) {
〈Calculate nonlinear propagation constants of layer 79 〉;
〈Propagate fields over homogeneous layer 80 〉;
〈Propagate fields over interface to next layer 81 〉;
if (verbose) {
〈Display simulation status and estimated time of arrival 82 〉;
}
}
}

This code is used in section 75.

74 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §79

79. Calculate the nonlinear, optical field- and polarization-dependent contributions to the refractive index,
including electric dipolar (all-optical) as well as magetic dipolar (magneto-optical) contributions.
Here the local variables are defined as

aafp2 = |Ef
j+
(zj)|2, etafp [j] = ηf+(zj)

aafm2 = |Ef
j−
(zj)|2, etafm [j] = ηf−(zj)

aabp2 = |Eb
j+(zj)|

2, etabp [j] = ηb+(zj)

aabm2 = |Eb
j−(zj)|

2, etabm [j] = ηb−(zj)

and the optical field-dependent propagation constants ηf± and ηb± are given in terms of the optical fields and
material parameters of the layer zj < z < zj+1 as

etafp[j] =
3

8nj
((pe[j] + pm[j])(|Ef

j+
(zj)|2 + 2|Eb

j−(zj)|
2) + (qe[j] + qm[j])(|Ef

j−
(zj)|2 + |Eb

j+(zj)|
2)),

etafm[j] =
3

8nj
((pe[j]− pm[j])(|Ef

j−
(zj)|2 + 2|Eb

j+(zj)|
2) + (qe[j]− qm[j])(|Ef

j+
(zj)|2 + |Eb

j−(zj)|
2)),

etabp[j] =
3

8nj
((pe[j]− pm[j])(|Eb

j+(zj)|
2 + 2|Ef

j−
(zj)|2) + (qe[j]− qm[j])(|Eb

j−(zj)|
2 + |Ef

j+
(zj)|2)),

etabm[j] =
3

8nj
((pe[j] + pm[j])(|Eb

j−(zj)|
2 + 2|Ef

j+
(zj)|2) + (qe[j] + qm[j])(|Eb

j+(zj)|
2 + |Ef

j−
(zj)|2)).

For a more strict derivation of these parameters, as governing the phase evolution of light in homogeneous
nonlinear magneto-optical Kerr-media, see F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).

〈Calculate nonlinear propagation constants of layer 79 〉 ≡
{
aafp2 = cdabs (efp [j]);
aafm2 = cdabs (efm [j]);
aabp2 = cdabs (ebp [j]);
aabm2 = cdabs (ebm [j]);

aafp2 ∗= aafp2 ; /∗ equals |Ef
j+
(zj)|2 ∗/

aafm2 ∗= aafm2 ; /∗ equals |Ef
j−
(zj)|2 ∗/

aabp2 ∗= aabp2 ; /∗ equals |Eb
j+
(zj)|2 ∗/

aabm2 ∗= aabm2 ; /∗ equals |Eb
j−
(zj)|2 ∗/

tmp = 3.0/(8.0 ∗ n[j]);
etafp [j] = tmp ∗ ((pe [j] + pm [j]) ∗ (aafp2 + 2.0 ∗ aabm2) + (qe [j] + qm [j]) ∗ (aafm2 + aabp2));
etafm [j] = tmp ∗ ((pe [j]− pm [j]) ∗ (aafm2 + 2.0 ∗ aabp2) + (qe [j]− qm [j]) ∗ (aafp2 + aabm2));
etabp [j] = tmp ∗ ((pe [j]− pm [j]) ∗ (aabp2 + 2.0 ∗ aafm2) + (qe [j]− qm [j]) ∗ (aabm2 + aafp2));
etabm [j] = tmp ∗ ((pe [j] + pm [j]) ∗ (aabm2 + 2.0 ∗ aafp2) + (qe [j] + qm [j]) ∗ (aabp2 + aafm2));
}

This code is used in section 78.

§80 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 75

80. Having calculated the nonlinear propagation constants of the layer, now propagate the optical fields to
the next interface in the negative z-direction. This wave propagation in homogeneous slices of the medium is
performed using the analytical solution for loss-less propagation as published in F. Jonsson and C. Flytzanis,
Phys. Rev. Lett. 82, 1426 (1999).
After this propagation over the homogeneous slice (layer), the temporary variables tmpfp , tmpfm , tmpbp ,

and tmpbm contain the forward and backward travelling optical fields taken at the “beginning” of the current,
homogeneous segment.

〈Propagate fields over homogeneous layer 80 〉 ≡
{
tmpfp = cmul (efp [j], crexpi (−omega ∗ (etafp [j] + g[j]) ∗ dz [j]/c));
tmpfm = cmul (efm [j], crexpi (−omega ∗ (etafm [j]− g[j]) ∗ dz [j]/c));
tmpbp = cmul (ebp [j], crexpi (omega ∗ (etabp [j]− g[j]) ∗ dz [j]/c));
tmpbm = cmul (ebm [j], crexpi (omega ∗ (etabm [j] + g[j]) ∗ dz [j]/c));
}

This code is used in section 78.

81. Make the passage over the interface to the next layer. The infinitesimal propagation of the waves over
the interfaces between homogeneous layers is performed by using the previously calculated reflection and
transmission coefficients, taking the linear magneto-optical effect into account as well.

〈Propagate fields over interface to next layer 81 〉 ≡
{
if (j > 1) {
efp [j − 1] = crdiv (cmul (csub(tmpfp , rcmul (rhopm [j], tmpbm)),

crexpi (−omega ∗ n[j − 1] ∗ dz [j − 1]/c)), taup [j]);
efm [j − 1] = crdiv (cmul (csub (tmpfm , rcmul (rhopp [j], tmpbp)),

crexpi (−omega ∗ n[j − 1] ∗ dz [j − 1]/c)), taum [j]);
ebp [j − 1] = cadd (rcmul (taupp [j], cmul (tmpbp , crexpi (omega ∗ n[j − 1] ∗ dz [j − 1]/c))),

rcmul (rhom [j], cmul (efm [j − 1], crexpi (2.0 ∗ omega ∗ n[j − 1] ∗ dz [j − 1]/c))));
ebm [j − 1] = cadd (rcmul (taupm [j], cmul (tmpbm , crexpi (omega ∗ n[j − 1] ∗ dz [j − 1]/c))),

rcmul (rhop [j], cmul (efp [j − 1], crexpi (2.0 ∗ omega ∗ n[j − 1] ∗ dz [j − 1]/c))));
}
else {
efp [0] = crdiv (csub (tmpfp , rcmul (rhopm [1], tmpbm)), taup [1]);
efm [0] = crdiv (csub(tmpfm , rcmul (rhopp [1], tmpbp)), taum [1]);
ebp [0] = cadd (rcmul (taupp [1], tmpbp), rcmul (rhom [1], efm [0]));
ebm [0] = cadd (rcmul (taupm [1], tmpbm), rcmul (rhop [1], efp [0]));
}
}

This code is used in section 78.

76 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §82

82. Display the real-time progress in the simulation and calculate the estimated time of arrival for finishing
of the simulation. The completeness of the simulation is displayed for every ten percent up to successful
termination of the program at one hundred percent.
The formula for calculation of the progress is

{
progress in
percent

}

= 100× (N − j − 1) + (ki − 1)(N − 1) + keMi(N − 1) + (k − 1)MeMi(N − 1)

MMeMe(N − 1)
,

where
1 ≤ j ≤ N [Layer counter index]

1 ≤ k ≤M [Wavelength counter index]

1 ≤ ki ≤Mi [Intensity counter index]

1 ≤ ke ≤Me [Ellipticity counter index]

〈Display simulation status and estimated time of arrival 82 〉 ≡
{
modf (100.0 ∗ ((float)((nn − j − 1) + (ki − 1) ∗ (nn − 1) + (ke − 1) ∗mmi ∗ (nn − 1) + (k − 1) ∗mme ∗

mmi ∗ (nn − 1)))/((float)(mm ∗mme ∗mmi ∗ (nn − 1))),&stn);
if (stn > status + 10) {
status = status + 10;
now = time (Λ);
eta = initime + ((int)((100.0/((double) status)) ∗ difftime (now , initime)));
fprintf (stdout , " ...%2d percent finished... ", status);
fprintf (stdout , " ETA: %s", ctime (&eta));
}
}

This code is used in section 78.

§83 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 77

83. Having calculated the input electromagnetic field from the given output field (as in this case, using
the implicit way of calculating the transmission characteristics of a nonlinear magneto-optical Bragg grat-
ing), now calculate the corresponding incident (S0, S1, S2, S3), transmitted (W0,W1,W2,W3), and reflected
(V0, V1, V2, V3) Stokes parameters of the optical fields. Notice that in this inverse formulation of the algo-
rithm, the transmitted Stokes parameters are not really calculated in a strict sense, since they follow directly
from the given input to the program – the transmitted optical field.
The Stokes parameters are defined as conforming to the standard definition in J. D. Jackson’s Classical

Electrodynamics (Wiley, New York, 1975), as

S0 = |Ef
+(z

−
0)|2 + |Ef

−(z
−
0)|2, S1 = 2Re[Ef∗

+ (z−0)Ef
−(z

−
0)],

S3 = |Ef
+(z

−
0)|2 − |Ef

−(z
−
0)|2, S2 = 2 Im[Ef∗

+ (z−0)Ef
−(z

−
0)],

for the incident wave,

W0 = |Ef
+(z

+
N)|2 + |Ef

−(z
+
N)|2, W1 = 2Re[Ef∗

+ (z+N)Ef
−(z

+
N)],

W3 = |Ef
+(z

+
N)|2 − |Ef

−(z
+
N)|2, W2 = 2 Im[Ef∗

+ (z+N)Ef
−(z

+
N)],

for the transmitted wave, and finally

V0 = |Eb
+(z

−
0)|2 + |Eb

−(z
−
0)|2, V1 = 2Re[Eb∗

+ (z−0)Eb
−(z

−
0)],

V3 = |Eb
+(z

−
0)|2 − |Eb

−(z
−
0)|2, V2 = 2 Im[Eb∗

+ (z−0)Eb
−(z

−
0)],

for the reflected wave of the grating structure. These parameters fully specify the reflection and transmission
characteristics for the nonlinear magneto-optical grating structure, in a linear as well as nonlinear optical
domain. In particular, the intensity transmission and reflection coefficients are expressed in as T = W0/S0

and R = V0/S0, respectively.
In this calculation, a check is being performed regarding if the simulation is being performed for a multiple

set of intensities and ellipticities of the transmitted light; if found to be so, then the set of Stokes parameters
are calculated in order to create topological graphs as in F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82,
1426 (1999), in which case only one particular wavelength should being considered for the simulation
(otherwise we would end up with too many topological graphs to keep track of); otherwise the complex-valued
amplitude reflection and transmission coefficients,

ρ±(ω) = Eb
0∓(z0)/E

f
0±(z0), τ±(ω) = Ef

N±
(zN)/Ef

0±(z0),

are calculated, in order to create graphs of the spectral reflection and transmission properties of the magneto-
optical grating for circularly polarized fields (in which case k > 1 is implicitly assumed).
If Stokes parameters are generated as data ouput, the resulting output files (named according to the

suffix convention outfilename.s0.dat, outfilename.s1.dat, . . . outfilename.v0.dat, . . ., etc.), can after the
simulation be used for creating topological graphs.
For instance, by mapping the contents of Stokes parameter files outfilename.s0.dat, outfilename.s3.dat,

and outfilename.w0.dat (using, for example, the MATLAB command mesh(s0,s3./s0,w0), assuming that
the variables s0, s3, and w0 were loaded using the MATLAB commands s0=load(\outfilename.s0.dat);
s3=load(\outfilename.s3.dat); w0=load(\outfilename.w0.dat);), one gets a topological graph show-
ing (s0 ,s3 ,w0) as defining a surface showing the transmitted intensity w0 as function of the input intensity
s0 and input ellipticity s3 .
Similarly, two-dimensional graphs can be generated by, as an example, instead using the MATLAB com-

mand contour(s3./s0,w3./w0,s0), to get graphs of the transmitted ellipticity w3./w0 (w3 /w0 , the “y-
coordinate”) as function of the input ellipticity s3./s0 (s3 /s0 , the “x-coordinate”), for various values of the
input intensity s0 (s0 , the “z-coordinate”). This way of creating two-dimensional graphs from a paramet-
ric hypersurface of Stokes-parameters might seem to be a cumbersome way of generating a visible output;
however, it actually turns out to be a very convenient method. Once one has adopted to this somewhat

78 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §83

topologically directed way of thinking, any element of the Stokes vector is easily visualized as function of
any of the other variables, and one avoids the difficulty that arise whenever the parameter of interest is a
multivalued function of the other parameters (particularly appreciated when considering, for example, opti-
cally bistable behaviour of the structure, since one for those cases carefully must sort out data that belong
to different state branches).
As a default, and as a matter of convention of electrodynamics, all Stokes parameters are given in V2/m2,

through their definition. For example, the incident field (which is calculated by the program in this inverse
formulation of the problem) is expressed in terms of the Stokes parameters as

S0 = |Ef
0+
|2 + |Ef

0−
|2, S1 = 2Re[Ef∗

0+
Ef

0−
],

S3 = |Ef
0+ |

2 − |Ef
0− |

2, S2 = 2 Im[Ef∗
0+E

f
0−].

However, the direct interpretation of these quantities in terms of squared Volts per square metres is sometimes
somewhat inconvenient; therefore, those parameters can be scaled to give an interpretation of the intensity
(in regular SI units measured in Watts per square metres), as S′

k = (ε0c/2)Sk, or explicitly

S′
0 = (ε0c/2)[|Ef

0+ |
2 + |Ef

0− |
2], S′

1 = (ε0c/2)2Re[E
f∗
0+E

f
0−],

S′
3 = (ε0c/2)[|Ef

0+ |
2 − |Ef

0− |
2], S′

2 = (ε0c/2)2 Im[Ef∗
0+E

f
0−].

In this representation, S′
0 is now identical to the incident intensity Iin [W/m2]. In order to have those scaled

Stokes parameters S′
k written to file, rather than the default ones, one convenient possibility is to use the

previously added −−scale_stokesparams option, to include −−scale_stokesparams 1.327209e−3 at the
command line when invoking the program. The numerical value of this scaling was obtained from†

ε0c/2 = (8.854187817 . . .× 10−12 F/m)× (2.99792458× 108 m/s)/2

≈ 1.327209× 10−3 F/s.

〈Write Stokes parameters and reflection coefficients to file 83 〉 ≡
{ /∗ Scan the grating spatially for the maximum intra-grating intensity. ∗/

/∗ This is performed with the original, unscaled Stokes parameters. ∗/
if (intensityinfo) {
for (j = 0; j ≤ nn ; j++) {
tmp = (epsilon0 ∗ n[j] ∗ c/2) ∗ (cabs2 (efp [j]) + cabs2 (efm [j]));
if (maxintens < tmp) {
maxintens = tmp ;
maxintens layer = j;
maxintens inintens = (epsilon0 ∗ nsurr ∗ c/2) ∗ (cabs2 (efp [0]) + cabs2 (efm [0]));
maxintens inellip = (cabs2 (efp [0])− cabs2 (efm [0]))/(cabs2 (efp [0]) + cabs2 (efm [0]));
maxintens trintens = (epsilon0 ∗ nsurr ∗ c/2) ∗ (cabs2 (efp [nn]) + cabs2 (efm [nn]));
maxintens trellip = (cabs2 (efp [nn])− cabs2 (efm [nn]))/(cabs2 (efp [nn]) + cabs2 (efm [nn]));
}
}
}
if ((mme > 1) ∧ (mmi > 1)) { /∗ “topological” mode ∗/

/∗ Stokes parameters of input optical wave ∗/
s0 = cabs2 (efp [0]) + cabs2 (efm [0]);
s1 = 2.0 ∗ cmul (conjg (efp [0]), efm [0]).r;

† In regular SI units, the physical dimension of the quantity ε0c/2 is [F/s] = [C/(V · s)], so the physical
dimension of (ε0c/2)Sk is easily verified as [C/(V · s)][V2/m2] = [C ·V/(m2 · s)] = [J/(m2 · s)] = [W/m2], as
expected for a physical quantity describing an energy flow per unit area.

§83 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 79

s2 = 2.0 ∗ cmul (conjg (efp [0]), efm [0]).i;
s3 = cabs2 (efp [0])− cabs2 (efm [0]);
if (scale stokesparams) {
s0 = s0 ∗ stoke scalefactor ;
s1 = s1 ∗ stoke scalefactor ;
s2 = s2 ∗ stoke scalefactor ;
s3 = s3 ∗ stoke scalefactor ;
}
if (normalize ellipticity) s3 = s3 /s0 ;
fprintf (fp s0 , "%16.12e ", s0);
fprintf (fp s1 , "%16.12e ", s1);
fprintf (fp s2 , "%16.12e ", s2);
fprintf (fp s3 , "%16.12e ", s3);
fflush (fp s0);
fflush (fp s1);
fflush (fp s2);
fflush (fp s3); /∗ Stokes parameters of reflected optical wave ∗/
v0 = cabs2 (ebp [0]) + cabs2 (ebm [0]);
v1 = 2.0 ∗ cmul (conjg (ebp [0]), ebm [0]).r;
v2 = 2.0 ∗ cmul (conjg (ebp [0]), ebm [0]).i;
v3 = cabs2 (ebp [0])− cabs2 (ebm [0]);
if (scale stokesparams) {
v0 = v0 ∗ stoke scalefactor ;
v1 = v1 ∗ stoke scalefactor ;
v2 = v2 ∗ stoke scalefactor ;
v3 = v3 ∗ stoke scalefactor ;
}
if (normalize ellipticity) v3 = v3 /v0 ;
fprintf (fp v0 , "%16.12e ", v0);
fprintf (fp v1 , "%16.12e ", v1);
fprintf (fp v2 , "%16.12e ", v2);
fprintf (fp v3 , "%16.12e ", v3);
fflush (fp v0);
fflush (fp v1);
fflush (fp v2);
fflush (fp v3); /∗ Stokes parameters of transmitted optical wave ∗/
w0 = cabs2 (efp [nn]) + cabs2 (efm [nn]);
w1 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).r;
w2 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).i;
w3 = cabs2 (efp [nn])− cabs2 (efm [nn]);
if (scale stokesparams) {
w0 = w0 ∗ stoke scalefactor ;
w1 = w1 ∗ stoke scalefactor ;
w2 = w2 ∗ stoke scalefactor ;
w3 = w3 ∗ stoke scalefactor ;
}
if (normalize ellipticity) w3 = w3 /w0 ;
fprintf (fp w0 , "%16.12e ",w0);
fprintf (fp w1 , "%16.12e ",w1);
fprintf (fp w2 , "%16.12e ",w2);
fprintf (fp w3 , "%16.12e ",w3);
fflush (fp w0);

80 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §83

fflush (fp w1);
fflush (fp w2);
fflush (fp w3);
}
else { /∗ “spectrum” mode ∗/
if (stokes parameter spectrum) { /∗ spectrum of Stokes parameters ∗/

/∗ Stokes parameters of input optical wave ∗/
s0 = cabs2 (efp [0]) + cabs2 (efm [0]);
s1 = 2.0 ∗ cmul (conjg (efp [0]), efm [0]).r;
s2 = 2.0 ∗ cmul (conjg (efp [0]), efm [0]).i;
s3 = cabs2 (efp [0])− cabs2 (efm [0]);
fprintf (fp spec , "%16.12e %16.12e %16.12e %16.12e %16.12e\n", lambda , omega , s1 /s0 , s2 /s0 ,

s3 /s0);
fflush (fp spec); /∗ Stokes parameters of reflected optical wave ∗/
v0 = cabs2 (ebp [0]) + cabs2 (ebm [0]);
v1 = 2.0 ∗ cmul (conjg (ebp [0]), ebm [0]).r;
v2 = 2.0 ∗ cmul (conjg (ebp [0]), ebm [0]).i;
v3 = cabs2 (ebp [0])− cabs2 (ebm [0]); /∗ CODE FOR WRITING TO BE INSERTED HERE
∗/ /∗ Stokes parameters of transmitted optical wave ∗/

w0 = cabs2 (efp [nn]) + cabs2 (efm [nn]);
w1 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).r;
w2 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).i;
w3 = cabs2 (efp [nn])− cabs2 (efm [nn]);
/∗ CODE FOR WRITING TO BE INSERTED HERE ∗/

}
if (save dbspectra) { /∗ spectrum in dB ∗/
tmp = (cabs2 (ebp [0]) + cabs2 (ebm [0]))/(cabs2 (efp [0]) + cabs2 (efm [0]));
fprintf (fp irspec , "%−10.8f %−10.8f\n", lambda ∗ 1.0 · 109, 10.0 ∗ log10 (tmp));
fprintf (fp itspec , "%−10.8f %−10.8f\n", lambda ∗ 1.0 · 109, 10.0 ∗ log10 (1.0− tmp));
fflush (fp irspec);
fflush (fp itspec);
}
else { /∗ linear scale between zero and unity ∗/
fprintf (fp irspec , "%−10.8f %−10.8f\n", lambda ∗ 1.0 · 109,

(cabs2 (ebp [0]) + cabs2 (ebm [0]))/(cabs2 (efp [0]) + cabs2 (efm [0])));
fprintf (fp itspec , "%−10.8f %−10.8f\n", lambda ∗ 1.0 · 109,

(cabs2 (efp [nn]) + cabs2 (efm [nn]))/(cabs2 (efp [0]) + cabs2 (efm [0])));
fflush (fp irspec);
fflush (fp itspec);
}
fprintf (fp icspec ,

"%−10.8f %−10.8f\n", lambda ∗ 1.0 · 109, (cabs2 (ebp [0]) + cabs2 (ebm [0]))/(cabs2 (efp [0]) +
cabs2 (efm [0])) + (cabs2 (efp [nn]) + cabs2 (efm [nn]))/(cabs2 (efp [0]) + cabs2 (efm [0])));

fflush (fp icspec);
}
if (ki ≥ mmi) { /∗ Write linefeed at and of each scan of intensity ∗/
if ((mme > 1) ∧ (mmi > 1)) {
fprintf (fp s0 , "\n");
fprintf (fp s1 , "\n");
fprintf (fp s2 , "\n");
fprintf (fp s3 , "\n");
fprintf (fp v0 , "\n");

§83 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 81

fprintf (fp v1 , "\n");
fprintf (fp v2 , "\n");
fprintf (fp v3 , "\n");
fprintf (fp w0 , "\n");
fprintf (fp w1 , "\n");
fprintf (fp w2 , "\n");
fprintf (fp w3 , "\n");
}
}
}

This code is used in section 75.

82 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §84

84. Check if the user has specified a filename for saving the electromagnetic field as it propagates through
the grating structure, with nne being the number of discrete sampling points within each homogeneous layer.
(This is quite useful since we otherwise just would get samples of the intra grating electromagnetic field at
the boundaries of the homogeneous layers of the model; for twolevel grating types with comparatively thick
layers this would otherwise, for example, cause unwanted discrete jumps in the plots of the polarization state
evolution in the grating structure.) If so, write the full information of the electromagnetic field to file, to be
used for later graphs (not necessarily just in terms of Stokes parameters).

〈Write intragrating field evolution to file 84 〉 ≡
{
if (fieldevoflag) {
if (fieldevoflag efield) {
if (verbose) fprintf (stdout , "Writing spatial field evolution to file.\n");
if (fp evo 6= Λ) {
for (j = 1; j ≤ nn − 1; j++) {
for (jje = 1; jje ≤ nne ; jje++) {
if (nne > 1) {
zt = z[j] + ((double)(jje − 1)) ∗ dz [j]/((double)(nne));
}
else {
zt = z[j];
}
tmpfp = cmul (efp [j], crexpi (omega ∗ (etafp [j] + g[j]) ∗ (zt − z[j])/c));
tmpfm = cmul (efm [j], crexpi (omega ∗ (etafm [j]− g[j]) ∗ (zt − z[j])/c));
tmpbp = cmul (ebp [j], crexpi (−omega ∗ (etabp [j]− g[j]) ∗ (zt − z[j])/c));
tmpbm = cmul (ebm [j], crexpi (−omega ∗ (etabm [j] + g[j]) ∗ (zt − z[j])/c));
if (normalize length to micrometer) {
fprintf (fp evo , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %1\

6.12e %16.12e"" %16.12e\n", zt ∗ 1.0 · 106, tmpfp .r, tmpfp .i, tmpfm .r, tmpfm .i,
tmpbp .r, tmpbp .i, tmpbm .r, tmpbm .i);

}
else {
fprintf (fp evo , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %1\

6.12e %16.12e"" %16.12e\n", zt , tmpfp .r, tmpfp .i, tmpfm .r, tmpfm .i, tmpbp .r,
tmpbp .i, tmpbm .r, tmpbm .i);

}
}
}
if (normalize length to micrometer) {
fprintf (fp evo , "%16.12e %16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %1\

6.12e %16.12e\n", z[nn] ∗ 1.0 · 106, efp [nn].r, efp [nn].i, efm [nn].r, efm [nn].i, ebp [nn].r,
ebp [nn].i, ebm [nn].r, ebm [nn].i);

}
else {
fprintf (fp evo , "%16.12e %16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %1\

6.12e %16.12e\n", z[nn], efp [nn].r, efp [nn].i, efm [nn].r, efm [nn].i, ebp [nn].r, ebp [nn].i,
ebm [nn].r, ebm [nn].i);

}
}
else {
fprintf (stderr , "%s: Could not write to file %s!\n", progname , fieldevofilename);
exit (FAILURE);
}

§84 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 83

}
else if (fieldevoflag stoke) {
if (verbose)
fprintf (stdout , "Writing spatial evolution of Stokes parameters to file.\n");

if ((fp evo s0 6= Λ) ∧ (fp evo s1 6= Λ) ∧ (fp evo s2 6= Λ) ∧ (fp evo s3 6= Λ)) {
for (j = 1; j ≤ nn − 1; j++) {
for (jje = 1; jje ≤ nne ; jje++) {
if (nne > 1) {
zt = z[j] + ((double)(jje − 1)) ∗ dz [j]/((double)(nne));
}
else {
zt = z[j];
}
tmpfp = cmul (efp [j], crexpi (omega ∗ (etafp [j] + g[j]) ∗ (zt − z[j])/c));
tmpfm = cmul (efm [j], crexpi (omega ∗ (etafm [j]− g[j]) ∗ (zt − z[j])/c));
tmpbp = cmul (ebp [j], crexpi (−omega ∗ (etabp [j]− g[j]) ∗ (zt − z[j])/c));
tmpbm = cmul (ebm [j], crexpi (−omega ∗ (etabm [j] + g[j]) ∗ (zt − z[j])/c));
s0 = cabs2 (tmpfp) + cabs2 (tmpfm);
s1 = 2.0 ∗ cmul (conjg (tmpfp), tmpfm).r;
s2 = 2.0 ∗ cmul (conjg (tmpfp), tmpfm).i;
s3 = cabs2 (tmpfp)− cabs2 (tmpfm);
if (normalize intensity) s0 = s0 /(cabs2 (efp [1]) + cabs2 (efm [1]));
if (normalize length to micrometer) {
fprintf (fp evo s0 , "%16.12e %16.12e\n", zt ∗ 1.0 · 106, s0);
fprintf (fp evo s1 , "%16.12e %16.12e\n", zt ∗ 1.0 · 106, s1);
fprintf (fp evo s2 , "%16.12e %16.12e\n", zt ∗ 1.0 · 106, s2);
fprintf (fp evo s3 , "%16.12e %16.12e\n", zt ∗ 1.0 · 106, s3);
}
else {
fprintf (fp evo s0 , "%16.12e %16.12e\n", zt , s0);
fprintf (fp evo s1 , "%16.12e %16.12e\n", zt , s1);
fprintf (fp evo s2 , "%16.12e %16.12e\n", zt , s2);
fprintf (fp evo s3 , "%16.12e %16.12e\n", zt , s3);
}
}
}
s0 = cabs2 (efp [nn]) + cabs2 (efm [nn]);
s1 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).r;
s2 = 2.0 ∗ cmul (conjg (efp [nn]), efm [nn]).i;
s3 = cabs2 (efp [nn])− cabs2 (efm [nn]);
if (normalize intensity) s0 = s0 /(cabs2 (efp [1]) + cabs2 (efm [1]));
if (normalize length to micrometer) {
fprintf (fp evo s0 , "%16.12e %16.12e\n", z[nn] ∗ 1.0 · 106, s0);
fprintf (fp evo s1 , "%16.12e %16.12e\n", z[nn] ∗ 1.0 · 106, s1);
fprintf (fp evo s2 , "%16.12e %16.12e\n", z[nn] ∗ 1.0 · 106, s2);
fprintf (fp evo s3 , "%16.12e %16.12e\n", z[nn] ∗ 1.0 · 106, s3);
}
else {
fprintf (fp evo s0 , "%16.12e %16.12e\n", z[nn], s0);
fprintf (fp evo s1 , "%16.12e %16.12e\n", z[nn], s1);
fprintf (fp evo s2 , "%16.12e %16.12e\n", z[nn], s2);
fprintf (fp evo s3 , "%16.12e %16.12e\n", z[nn], s3);

84 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §84

}
}
else {
fprintf (stderr , "%s: Could not write to file %s, %s, %s, or %s!\n", progname ,

fieldevofilename s0 , fieldevofilename s1 , fieldevofilename s2 , fieldevofilename s3);
exit (FAILURE);
}
}
else {
fprintf (stderr , "%s: Unknown field evolution flag.\n""%s: (This cannot happen)\n",

progname , progname);
exit (FAILURE);
}
}
}

This code is used in section 75.

§85 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 85

85. Check if the user has specified a filename for saving the electromagnetic intensity distribution inside
the grating structure, with nne being the number of discrete sampling points within each homogeneous layer.

〈Write intragrating intensity evolution to file 85 〉 ≡
{
if (intensityevoflag) {
if (fabs (ievolambda − lambda) < fabs (lambdastop − lambdastart)/((double)(mm))) {
if (verbose)
fprintf (stdout , "%s: Saving intensity evolution at lambda=%8.4e\n", progname , lambda);

if (strcmp(intensityevofilename , "")) {
if (fp ievo 6= Λ) {
for (j = 1; j ≤ nn − 1; j++) {
if (normalize length to micrometer) {
fprintf (fp ievo ,

"%16.12e %16.12e\n", z[j] ∗ 1.0 · 106, (cdabs (efp [j]) ∗ cdabs (efp [j]) + cdabs (efm [j]) ∗
cdabs (efm [j]))/(cdabs (efp [1]) ∗ cdabs (efp [1]) + cdabs (efm [1]) ∗ cdabs (efm [1])));

fprintf (fp ievo , "%16.12e %16.12e\n", z[j + 1] ∗ 1.0 · 106,
(cdabs (efp [j]) ∗ cdabs (efp [j]) + cdabs (efm [j]) ∗ cdabs (efm [j]))/(cdabs (efp [1]) ∗
cdabs (efp [1]) + cdabs (efm [1]) ∗ cdabs (efm [1])));

}
else {
fprintf (fp ievo , "%16.12e %16.12e\n", z[j], (cdabs (efp [j])∗cdabs (efp [j])+cdabs (efm [j])∗

cdabs (efm [j]))/(cdabs (efp [1]) ∗ cdabs (efp [1]) + cdabs (efm [1]) ∗ cdabs (efm [1])));
fprintf (fp ievo , "%16.12e %16.12e\n", z[j + 1],

(cdabs (efp [j]) ∗ cdabs (efp [j]) + cdabs (efm [j]) ∗ cdabs (efm [j]))/(cdabs (efp [1]) ∗
cdabs (efp [1]) + cdabs (efm [1]) ∗ cdabs (efm [1])));

}
}
}
else {
fprintf (stderr , "%s: Could not write to file %s!\n", progname , intensityevofilename);
exit (FAILURE);
}
}
}
}
}

This code is used in section 75.

86 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §86

86. Check if the user has specified a filename for saving the spatial grating structure to. If so, save the whole
grating structure to disk; this is useful as reference in graphs of the intragrating intensity and polarization
state evolution.

〈Write spatial grating structure to file 86 〉 ≡
{
if (writegratingtofile) {
if ((fp gr = fopen (gratingfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for output!\n", progname , gratingfilename);
exit (FAILURE);
}
if (normalize length to micrometer) { /∗ length z in micrometer ∗/
if (display surrounding media) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

(z[1]− 0.1 ∗ (z[nn]− z[1])) ∗ 1.0 · 106, nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[1] ∗ 1.0 · 106, nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
}
for (j = 1; j ≤ nn − 1; j++) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[j] ∗ 1.0 · 106, n[j], g[j], pe [j], pm [j], qe [j], qm [j]);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[j + 1] ∗ 1.0 · 106, n[j], g[j], pe [j], pm [j], qe [j], qm [j]);
}
if (display surrounding media) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[nn] ∗ 1.0 · 106, nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

(z[nn] + 0.1 ∗ (z[nn]− z[1])) ∗ 1.0 · 106, nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
}
}
else { /∗ length z in meter ∗/
if (display surrounding media) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[1]− 0.1 ∗ (z[nn]− z[1]), nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n", z[1],

nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
}
for (j = 1; j ≤ nn − 1; j++) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n", z[j],

n[j], g[j], pe [j], pm [j], qe [j], qm [j]);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n", z[j + 1],

n[j], g[j], pe [j], pm [j], qe [j], qm [j]);
}
if (display surrounding media) {
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n", z[nn],

nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
fprintf (fp gr , "%16.12e %16.12e %16.12e %16.12e"" %16.12e %16.12e %16.12e\n",

z[nn] + 0.1 ∗ (z[nn]− z[1]), nsurr , 0.0, 0.0, 0.0, 0.0, 0.0);
}
}
fclose (fp gr);
}

§86 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 87

}
This code is used in section 75.

88 CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING MAGBRAGG §87

87. Display the maximum optical intensity detected in the grating.

〈Print information on maximum optical intensity in grating 87 〉 ≡
{
if (intensityinfo) {
for (k = 1; k ≤ 64; k++) fprintf (stdout , (k < 64 ? "−" : "\n"));
fprintf (stdout , "Summary of intra−grating intensities:\n");
fprintf (stdout , "The maximum intensity %1.4e [W/m^2] (%1.4f GW/cm^2) was detected\n",

maxintens ,maxintens ∗ 1.0 · 10−13);
fprintf (stdout , "in layer %ld. The maximum intensity was detected at a transmitted\n",

maxintens layer);
fprintf (stdout , "intensity of %1.4e [W/m^2] (%1.4f GW/cm^2), and at a transmitted\n",

maxintens trintens ,maxintens trintens ∗ 1.0 · 10−13);
fprintf (stdout , "normalized ellipticity of S3/S0=%1.4f. ",maxintens trellip);
fprintf (stdout , "(where S3/S0=1 for LCP, and −1\n""for RCP).");
fprintf (stdout , "At this state, the calculated optical intensity incident to the\n");
fprintf (stdout , "crystal was %1.4e [W/m^2] (%1.4f GW/cm^2), or %1.1f percent\n",

maxintens inintens ,maxintens inintens ∗ 1.0 · 10−13, 100.0 ∗maxintens inintens/maxintens);
fprintf (stdout , "of the maximum intra−grating optical intensity.\n");
fprintf (stdout , "The calculated normalized incident ellipticity was %1.4f.\n",

maxintens inellip);
fprintf (stdout , "The intensity transmission was for this state %1.1f percent.\n",

100.0 ∗maxintens trintens/maxintens inintens);
for (k = 1; k ≤ 64; k++) fprintf (stdout , (k < 64 ? "−" : "\n"));
if (saveintensityinfologfile) { /∗ also save log to file ∗/
if ((intensinfologfile = fopen (intensinfologfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for intensity log!\n", progname ,

intensinfologfilename);
exit (FAILURE);
}
for (k = 1; k ≤ 32; k++) fprintf (intensinfologfile , (k < 32 ? "−" : "\n"));
fprintf (intensinfologfile , "Summary of intra−grating intensities:\n");
fprintf (intensinfologfile ,

"Maximum intensity %1.4e [W/sq.m] (%1.4f GW/sq.cm) was detected\n",maxintens ,
maxintens ∗ 1.0 · 10−13);

fprintf (intensinfologfile ,
"in layer %ld. Maximum intensity was detected at a transmitted\n",
maxintens layer);

fprintf (intensinfologfile ,
"intensity of %1.4e [W/sq.m] (%1.4f GW/sq.cm), and at transmitted\n",
maxintens trintens ,maxintens trintens ∗ 1.0 · 10−13);

fprintf (intensinfologfile , "normalized ellipticity of S3/S0=%1.4f. ",maxintens trellip);
fprintf (intensinfologfile , "(where S3/S0=1 for LCP, and −1\n""for RCP). ");
fprintf (intensinfologfile ,

"At this state, the calculated optical intensity incident to the\n");
fprintf (intensinfologfile ,

"crystal was %1.4e [W/sq.m] (%1.4f GW/sq.cm), or %1.1f percent\n",
maxintens inintens ,maxintens inintens ∗ 1.0 · 10−13, 100.0 ∗maxintens inintens/maxintens);

fprintf (intensinfologfile , "of the maximum intra−grating optical intensity.\n");
fprintf (intensinfologfile , "The calculated normalized incident ellipticity was %1.4f.\n",

maxintens inellip);

§87 MAGBRAGG CALCULATING THE ELECTRICAL FIELD DISTRIBUTION INSIDE THE GRATING 89

fprintf (intensinfologfile ,
"The intensity transmission was for this state %1.1f percent.\n",
100.0 ∗maxintens trintens/maxintens inintens);

fclose (intensinfologfile);
for (k = 1; k ≤ 32; k++) fprintf (intensinfologfile , (k < 32 ? "−" : "\n"));
}
}
}

This code is used in section 45.

90 ROUTINE FOR CHECKING FOR NUMERICAL CHARACTERS MAGBRAGG §88

88. Routine for checking for numerical characters. The numeric() routine takes one character ch
as argument, and returns 1 (“true”) if the character is a sign or numeric, otherwise 0 (“false”) is returned.
Notice that numerical fields of the form “.314159” are not allowed or recognized here.

〈Routine for checking for numerical characters 88 〉 ≡
int numeric(char ch)
{
if ((ch ≡ ’0’)∨ (ch ≡ ’1’)∨ (ch ≡ ’2’)∨ (ch ≡ ’3’)∨ (ch ≡ ’4’)∨ (ch ≡ ’5’)∨ (ch ≡ ’6’)∨ (ch ≡

’7’) ∨ (ch ≡ ’8’) ∨ (ch ≡ ’9’) ∨ (ch ≡ ’+’) ∨ (ch ≡ ’−’)) {
return (1); /∗ yes, this is a sign or numeric character ∗/
}
else {
return (0); /∗ no, this is not a sign or numeric character ∗/
}
}

This code is used in section 50.

§89 MAGBRAGG ROUTINE FOR INITIALIZATION OF CANTOR TYPE FRACTAL GRATINGS 91

89. Routine for initialization of Cantor type fractal gratings.

〈Routine for initialization of Cantor type fractal gratings 89 〉 ≡
void init cantor fractal grating (double ∗z, int indxmin , int indxmax ,double llmin ,double

llmax ,double n1 ,double n2)
{
int indxmid ;
double dll ;

if (indxmax − indxmin ≡ 1) {
z[indxmin] = llmin ;
z[indxmax] = llmax ;
}
else if (indxmax − indxmin ≥ 3) {
indxmid = (indxmin + indxmax)/2;
dll = (n2 /(n1 + 2 ∗ n2)) ∗ (llmax − llmin);
init cantor fractal grating (z, indxmin , indxmid , llmin , llmin + dll , n1 , n2);
init cantor fractal grating (z, indxmid + 1, indxmax , llmax − dll , llmax , n1 , n2);
}
else {
fprintf (stderr , "%s: Error in indexes detected in routine %s", progname ,

"init_cantor_fractal_grating()!\n");
fprintf (stderr , "%s: Please verify that the number of discrete layers\n", progname);
fprintf (stderr , "%s: in the grating is N−1, where N is an integer"" power of 2.\n",

progname);
exit (FAILURE);
}
}

This code is used in section 50.

92 ROUTINES FOR REMOVING PRECEDING PATH OF FILENAMES MAGBRAGG §90

90. Routines for removing preceding path of filenames. In this block all routines related to
removing preceding path strings go. Not really fancy programming, and no contribution to any increase of
numerical efficiency or precision; just for the sake of keeping a tidy terminal output of the program. The
strip away path () routine is typically called when initializing the program name string progname from the
command line string argv [0], and is typically located in the blocks related to parsing of the command line
options.

〈Routines for removing preceding path of filenames 90 〉 ≡
〈Routine for checking valid path characters 91 〉
〈Routine for stripping away path string 92 〉

This code is used in section 50.

91. Checking for a valid path character. The pathcharacter routine takes one character ch as argument,
and returns 1 (“true”) if the character is valid character of a path string, otherwise 0 (“false”) is returned.
The isalnum requires ctype.h.

〈Routine for checking valid path characters 91 〉 ≡
short pathcharacter (int ch)
{
return (isalnum (ch)∨ (ch ≡ ’.’)∨ (ch ≡ ’/’)∨ (ch ≡ ’\\’)∨ (ch ≡ ’_’)∨ (ch ≡ ’−’)∨ (ch ≡ ’+’));
}

This code is used in section 90.

92. Stripping path string from a file name. The strip away path routine takes a character string filename

as argument, and returns a pointer to the same string but without any preceding path segments. This
routine is, for example, useful for removing paths from program names as parsed from the command line.

〈Routine for stripping away path string 92 〉 ≡
char ∗strip away path (char filename [])
{
int j, k = 0;

while (pathcharacter (filename [k])) k++;
j = (−−k); /∗ this is the uppermost index of the full path+file string ∗/
while (isalnum ((int)(filename [j]))) j−−;
j++; /∗ this is the lowermost index of the stripped file name ∗/
return (&filename [j]);
}

This code is used in section 90.

§93 MAGBRAGG ROUTINES FOR GENERATION OF RANDOM NUMBERS 93

93. Routines for generation of random numbers. The ran1 () routine is taken from Numerical
Recipes in C, 2nd ed. (Cambridge University Press, New York, 1994).

〈Routines for generation of random numbers 93 〉 ≡
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1 + (IM − 1)/NTAB)
#define EPS 1.2 · 10−7

#define RNMX (1.0− EPS)
float ran1 (long ∗idum)
{
int j;
long k;
static long iy = 0;
static long iv [NTAB];
float temp ;

if (∗idum ≤ 0 ∨ ¬iy) {
if (−(∗idum) < 1) ∗idum = 1;
else ∗idum = −(∗idum);
for (j = NTAB + 7; j ≥ 0; j−−) {
k = (∗idum)/IQ;
∗idum = IA ∗ (∗idum − k ∗ IQ)− IR ∗ k;
if (∗idum < 0) ∗idum += IM;
if (j < NTAB) iv [j] = ∗idum ;
}
iy = iv [0];
}
k = (∗idum)/IQ;
∗idum = IA ∗ (∗idum − k ∗ IQ)− IR ∗ k;
if (∗idum < 0) ∗idum += IM;
j = iy/NDIV;
iy = iv [j];
iv [j] = ∗idum ;
if ((temp = AM ∗ iy) > RNMX) return RNMX;
else return temp ;
}

#undef IA

#undef IM

#undef AM

#undef IQ

#undef IR

#undef NTAB

#undef NDIV

#undef EPS

#undef RNMX

This code is used in section 50.

94 ROUTINES FOR DOING COMPLEX ARITHMETICS MAGBRAGG §94

94. Routines for doing complex arithmetics. By using the data structure dcomplex, which here
is the basic construct for complex numbers, containing real and imaginary parts in double precision, several
routines for doing arithmetics with this representation have been implemented.

〈Routines for complex arithmetics 94 〉 ≡
〈Complex number 95 〉
〈Complex conjugation 96 〉
〈Absolute value of complex number 97 〉
〈Squared absolute value of complex number 98 〉
〈Complex addition 99 〉
〈Complex subtraction 100 〉
〈Complex multiplication 101 〉
〈Complex division 104 〉
〈Complex square root 107 〉
〈Complex exponentiation 108 〉

This code is used in section 50.

95. The function complex (a, b) takes two real valued arguments a and b as input, and returns the complex
number c = a + ib. This basic construct is useful for storing temporary results, and for internal use in
routines dealing with complex arithmetics.

〈Complex number 95 〉 ≡
dcomplex complex (double re ,double im)
{
dcomplex c;

c.r = re ;
c.i = im ;
return c;
}

This code is used in section 94.

96. The function conjg (z) takes a complex valued argument z of type dcomplex as input, and returns
the complex conjugate z̄ = Re(z)− i Im(z).

〈Complex conjugation 96 〉 ≡
dcomplex conjg (dcomplex z)
{
dcomplex c;

c.r = z.r;
c.i = −z.i;
return c;
}

This code is used in section 94.

§97 MAGBRAGG ROUTINES FOR DOING COMPLEX ARITHMETICS 95

97. The function cdabs (z) takes a complex valued argument z as input, and returns the absolute value
|z| = [Re(z)2 + Im(z)2]1/2.

〈Absolute value of complex number 97 〉 ≡
double cdabs (dcomplex z)
{
double x, y, c, tmp ;

x = fabs (z.r);
y = fabs (z.i);
if (x ≡ 0.0) c = y;
else if (y ≡ 0.0) c = x;
else if (x > y) {
tmp = y/x;
c = x ∗ sqrt (1.0 + tmp ∗ tmp);
}
else {
tmp = x/y;
c = y ∗ sqrt (1.0 + tmp ∗ tmp);
}
return c;
}

This code is used in section 94.

98. The function cabs2 (z) takes a complex valued argument z as input, and returns the squared absolute
value |z|2 = Re(z)2 + Im(z)2. This function is identical to the cdabs (z) function, with the exception that
the squared result is returned.

〈Squared absolute value of complex number 98 〉 ≡
double cabs2 (dcomplex z)
{
double x, y, c, tmp ;

x = fabs (z.r);
y = fabs (z.i);
if (x ≡ 0.0) c = y ∗ y;
else if (y ≡ 0.0) c = x ∗ x;
else if (x > y) {
tmp = y/x;
c = x ∗ x ∗ (1.0 + tmp ∗ tmp);
}
else {
tmp = x/y;
c = y ∗ y ∗ (1.0 + tmp ∗ tmp);
}
return c;
}

This code is used in section 94.

96 ROUTINES FOR DOING COMPLEX ARITHMETICS MAGBRAGG §99

99. The function cadd (a, b) takes complex valued arguments a and b as inputs, and returns the complex
valued sum a+ b.

〈Complex addition 99 〉 ≡
dcomplex cadd (dcomplex a,dcomplex b)
{
dcomplex c;

c.r = a.r + b.r;
c.i = a.i+ b.i;
return c;
}

This code is used in section 94.

100. The function csub (a, b) takes complex valued arguments a and b as inputs, and returns the complex
valued difference a− b.
〈Complex subtraction 100 〉 ≡
dcomplex csub (dcomplex a,dcomplex b)
{
dcomplex c;

c.r = a.r − b.r;
c.i = a.i− b.i;
return c;
}

This code is used in section 94.

101. When dealing with multiplication involving complex numbers, the case where one of the numbers is
entirely real is distinguished from the general multiplication by two complex valued numbers, in order to
speed up the multiplication somewhat.

〈Complex multiplication 101 〉 ≡
〈Multiplication by two complex numbers 102 〉
〈Multiplication by real and complex numbers 103 〉

This code is used in section 94.

102. The function cmul (a, b) takes complex valued arguments a and b as inputs, and returns the complex
valued product ab .

〈Multiplication by two complex numbers 102 〉 ≡
dcomplex cmul (dcomplex a,dcomplex b)
{
dcomplex c;

c.r = a.r ∗ b.r − a.i ∗ b.i;
c.i = a.i ∗ b.r + a.r ∗ b.i;
return c;
}

This code is used in section 101.

§103 MAGBRAGG ROUTINES FOR DOING COMPLEX ARITHMETICS 97

103. The function rcmul (a, b) takes a real valued argument a and a complex valued arguments b as inputs,
and returns the complex valued product ab = aRe(b) + ia Im(b).

〈Multiplication by real and complex numbers 103 〉 ≡
dcomplex rcmul (double a,dcomplex b)
{
dcomplex c;

c.r = a ∗ b.r;
c.i = a ∗ b.i;
return c;
}

This code is used in section 101.

104. When dealing with division involving complex numbers, the case where the denominator is entirely
real is distinguished from the general division by two complex valued numbers, in order to speed up the
division somewhat.

〈Complex division 104 〉 ≡
〈Division by complex numbers 105 〉
〈Division by complex and real number 106 〉

This code is used in section 94.

98 ROUTINES FOR DOING COMPLEX ARITHMETICS MAGBRAGG §105

105. The function cdiv (a, b) takes complex valued arguments a and b as inputs, and returns the complex
valued quote a/b. If the denominator is found to be real, this routine speed up the division in similar to the
crdiv routine, by instead applying the rules of real-valued division.

〈Division by complex numbers 105 〉 ≡
dcomplex cdiv (dcomplex a,dcomplex b)
{
dcomplex c;
double r, den ;

if (cdabs (b) > 0.0) {
if (fabs (b.i) ≡ 0.0) {
c.r = a.r/b.r;
c.i = a.i/b.r;
}
else {
if (fabs (b.r) ≥ fabs (b.i)) {
r = b.i/b.r;
den = b.r + r ∗ b.i;
c.r = (a.r + r ∗ a.i)/den ;
c.i = (a.i− r ∗ a.r)/den ;
}
else {
r = b.r/b.i;
den = b.i+ r ∗ b.r;
c.r = (a.r ∗ r + a.i)/den ;
c.i = (a.i ∗ r − a.r)/den ;
}
}
}
else {
fprintf (stderr , "Error in cdiv(): Division by zero!\n");
exit (FAILURE);
}
return c;
}

This code is used in section 104.

§106 MAGBRAGG ROUTINES FOR DOING COMPLEX ARITHMETICS 99

106. The function crdiv (a, b) takes a complex valued argument a of and a real valued argument b as inputs,
and returns the complex valued quote a/b = Re(a)/b+ i Im(a)/b.

〈Division by complex and real number 106 〉 ≡
dcomplex crdiv (dcomplex a,double b)
{
dcomplex c;

if (fabs (b) > 0.0) {
c.r = a.r/b;
c.i = a.i/b;
}
else {
fprintf (stderr , "Error in crdiv(): Division by zero!\n");
exit (FAILURE);
}
return c;
}

This code is used in section 104.

100 ROUTINES FOR DOING COMPLEX ARITHMETICS MAGBRAGG §107

107. The function csqrt (z) takes a complex valued argument z as input and returns the complex valued
square root z1/2.

〈Complex square root 107 〉 ≡
dcomplex csqrt (dcomplex z)
{
dcomplex c;
double x, y, w, r;

if ((z.r ≡ 0.0) ∧ (z.i ≡ 0.0)) {
c.r = 0.0;
c.i = 0.0;
return c;
}
else {
x = fabs (z.r);
y = fabs (z.i);
if (x ≥ y) {
r = y/x;
w = sqrt (x) ∗ sqrt (0.5 ∗ (1.0 + sqrt (1.0 + r ∗ r)));
}
else {
r = x/y;
w = sqrt (y) ∗ sqrt (0.5 ∗ (r + sqrt (1.0 + r ∗ r)));
}
if (z.r ≥ 0.0) {
c.r = w;
c.i = 0.5 ∗ z.i/w;
}
else {
c.i = ((z.i ≥ 0) ? w : −w);
c.r = 0.5 ∗ z.i/c.i;
}
return c;
}
}

This code is used in section 94.

108. For complex exponentiation, we distinguish between the case when the argument is complex valued,
with nonzero real and imaginary parts, and the case where the argument is entirely imaginary. In the former
case, the cexp routine should be used, while in the latter case, the crexpi routine is more appropriate.

〈Complex exponentiation 108 〉 ≡
〈Exponentiation by complex number 109 〉
〈Exponentiation by imaginary number 110 〉

This code is used in section 94.

§109 MAGBRAGG ROUTINES FOR DOING COMPLEX ARITHMETICS 101

109. The function cexp(a) takes a complex valued argument a as input and returns the complex valued
exponential exp(a) = exp(Re(a))[cos(Im(a)) + i sin(Im(a))].

〈Exponentiation by complex number 109 〉 ≡
dcomplex cexp(dcomplex a)
{
dcomplex c;
double tmp = exp (a.r);

c.r = tmp ∗ cos (a.i);
c.i = tmp ∗ sin (a.i);
return c;
}

This code is used in section 108.

110. The function crexpi (a) takes a real valued argument a as input and returns the complex valued
exponential exp(ia) = cos(a) + i sin(a).

〈Exponentiation by imaginary number 110 〉 ≡
dcomplex crexpi (double a)
{
dcomplex c;

c.r = cos (a);
c.i = sin (a);
return c;
}

This code is used in section 108.

102 SUBROUTINES FOR MEMORY ALLOCATION MAGBRAGG §111

111. Subroutines for memory allocation. Here follows the routines for memory allocation and
deallocation of double precision real and complex valued vectors, as used for storing the optical field
distribution in the grating, the refractive index distribution of the grating, etc.

〈Routines for memory allocation of vectors 111 〉 ≡
〈Allocation of real-valued vectors 112 〉
〈Allocation of complex-valued vectors 113 〉
〈Deallocation of real-valued vectors 114 〉
〈Deallocation of complex-valued vectors 115 〉

This code is used in section 50.

112. The dvector routine allocate a real-valued vector of double precision, with vector index ranging from
nl to nh , while the dcvector routine allocate a complex-valued vector of double precision, with vector index
ranging from nl to nh .

〈Allocation of real-valued vectors 112 〉 ≡
double ∗dvector (long nl , long nh)
{
double ∗v;
v = (double ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (double)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in dvector()\n");
exit (FAILURE);
}
return v − nl + 1;
}

This code is used in section 111.

113. The dcvector routine allocate a complex-valued vector of double precision, with vector index ranging
from nl to nh . The basic building type of the obtained complex valued vector is the globally declarated
dcomplex data structure.

〈Allocation of complex-valued vectors 113 〉 ≡
dcomplex ∗dcvector (long nl , long nh)
{
dcomplex ∗v;
v = (dcomplex ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (dcomplex)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in dcvector()\n");
exit (FAILURE);
}
return v − nl + 1;
}

This code is used in section 111.

114. The free dvector routine release the memory occupied by the real-valued vector v[nl .. nh].

〈Deallocation of real-valued vectors 114 〉 ≡
void free dvector (double ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));
}

This code is used in section 111.

§115 MAGBRAGG SUBROUTINES FOR MEMORY ALLOCATION 103

115. The free dcvector routine release the memory occupied by the complex-valued vector v[nl .. nh].

〈Deallocation of complex-valued vectors 115 〉 ≡
void free dcvector (dcomplex ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));
}

This code is used in section 111.

104 PARSING COMMAND LINE OPTIONS MAGBRAGG §116

116. Parsing command line options. All input parameters are passed to the program through
command line options and arguments to the program. The syntax of command line options is listed whenever
the program is invoked without any options, or whenever any of the −−help or −h options are specified at
startup.

〈Parse command line for parameter values 116 〉 ≡
{
progname = strip away path (argv [0]);
fprintf (stdout , "This is %s v.%s. %s\n", progname , VERSION, COPYRIGHT);
no arg = argc ;
while (−−argc) {
if (¬strcmp(argv [no arg − argc], "−o") ∨ ¬strcmp(argv [no arg − argc], "−−outputfile")) {

−−argc ;
strcpy (outfilename , argv [no arg − argc]);
}
else if (¬strcmp(argv [no arg −argc], "−w")∨¬strcmp(argv [no arg −argc], "−−writegratingfile"))
{
−−argc ;
strcpy (gratingfilename , argv [no arg − argc]);
writegratingtofile = 1;
}
else if (¬strcmp(argv [no arg − argc], "−−displaysurrmedia")) {
display surrounding media = (display surrounding media ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−a") ∨ ¬strcmp(argv [no arg − argc], "−−apodize")) {
〈Parse apodization options 118 〉;
}
else if (¬strcmp(argv [no arg − argc], "−−phasejump")) {
〈Parse phase jump options 119 〉;
}
else if (¬strcmp(argv [no arg − argc], "−−fieldevolution")) {
〈Parse field evolution saving options 121 〉;
}
else if (¬strcmp(argv [no arg − argc], "−−intensityevolution")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&ievolambda)) {
fprintf (stderr , "%s: Error in ’−−intensityevolution’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
strcpy (intensityevofilename , argv [no arg − argc]);
intensityevoflag = 1;
}
else if (¬strcmp(argv [no arg − argc], "−−spectrumfile")) {

−−argc ;
strcpy (spectrumfilename , argv [no arg − argc]);
}
else if (¬strcmp(argv [no arg − argc], "−−stokesspectrum")) {
stokes parameter spectrum = 1;
}
else if (¬strcmp(argv [no arg − argc], "−−trmtraject")) {

−−argc ;
strcpy (trmtraject filename , argv [no arg − argc]);

§116 MAGBRAGG PARSING COMMAND LINE OPTIONS 105

trmtraject specified = 1;
}
else if (¬strcmp(argv [no arg − argc], "−−intensityspectrumfile")) {

−−argc ;
strcpy (intensity reflection spectrumfilename , argv [no arg − argc]);
strcpy (intensity transmission spectrumfilename , argv [no arg − argc]);
strcpy (intensity check spectrumfilename , argv [no arg − argc]);
sprintf (intensity reflection spectrumfilename , "%s.irsp.dat",

intensity reflection spectrumfilename);
sprintf (intensity transmission spectrumfilename , "%s.itsp.dat",

intensity transmission spectrumfilename);
sprintf (intensity check spectrumfilename , "%s.chec.dat", intensity check spectrumfilename);
}
else if (¬strcmp(argv [no arg − argc], "−−logarithmicspectrum")) {
save dbspectra = 1;
}
else if (¬strcmp(argv [no arg − argc], "−v") ∨ ¬strcmp(argv [no arg − argc], "−−verbose")) {
verbose = (verbose ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−−scale_stokesparams")) {
scale stokesparams = 1;
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&stoke scalefactor)) {
fprintf (stderr , "%s: Error in ’−−scale_stokesparams’ option.\n", 3 9progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−−intensityinfo")) {
intensityinfo = (intensityinfo ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−−intensityinfologfile")) {
intensityinfo = 1;
saveintensityinfologfile = 1;
−−argc ;
strcpy (intensinfologfilename , argv [no arg − argc]);
}
else if (¬strcmp(argv [no arg − argc], "−−gyroperturb")) {
〈Parse gyration constant perturbation options 120 〉;
}
else if (¬strcmp(argv [no arg − argc], "−−normalize_length_to_um")) {
normalize length to micrometer = (normalize length to micrometer ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−−normalize_intensity")) {
normalize intensity = (normalize intensity ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−−normalize_ellipticity")) {
normalize ellipticity = (normalize ellipticity ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−−normalizedrepresentation")) {
normalize internally = (normalize internally ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−r") ∨ ¬strcmp(argv [no arg − argc], "−−random")) {

106 PARSING COMMAND LINE OPTIONS MAGBRAGG §116

randomdistribution = (randomdistribution ? 0 : 1);
}
else if (¬strcmp(argv [no arg − argc], "−h") ∨ ¬strcmp(argv [no arg − argc], "−−help")) {
showsomehelp ();
}
else if (¬strcmp(argv [no arg − argc], "−g") ∨ ¬strcmp(argv [no arg − argc], "−−grating")) {

−−argc ;
if (¬strcmp(argv [no arg − argc], "stepwise")) {
〈Parse for stepwise grating options 122 〉
}
else if (¬strcmp(argv [no arg − argc], "sinusoidal")) {
〈Parse for sinusoidal grating options 123 〉
}
else if (¬strcmp(argv [no arg − argc], "chirped")) {
〈Parse for chirped grating options 124 〉
}
else if (¬strcmp(argv [no arg − argc], "fractal")) {
〈Parse for fractal grating options 125 〉
}
else {
fprintf (stderr , "%s: Error in ’−g’ or ’−−grating’ option.\n", progname);
fprintf (stderr , "%s: (No valid grating type found!)\n", progname);
exit (FAILURE);
}
}
else if ((¬strcmp(argv [no arg −argc], "−L"))∨ (¬strcmp(argv [no arg −argc], "−−gratinglength")))
{
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&ll)) {
fprintf (stderr , "%s: Error in ’−L’ option.\n", progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−−modifylayer")) {
〈Parse for options for modified layer of grating structure 126 〉
}
else if (¬strcmp(argv [no arg − argc], "−−refindsurr")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&nsurr)) {
fprintf (stderr , "%s: Error in ’−−refindsurr’ option.\n", progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−−trmintensity")) {
〈Parse the command line for transmitted intensity range 127 〉
}
else if (¬strcmp(argv [no arg − argc], "−−trmellipticity")) {
〈Parse the command line for transmitted ellipticity range 128 〉
}
else if (¬strcmp(argv [no arg − argc], "−−lambdastart")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&lambdastart)) {

§116 MAGBRAGG PARSING COMMAND LINE OPTIONS 107

fprintf (stderr , "%s: Error in ’−−lambdastart’ option.\n", progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−−lambdastop")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&lambdastop)) {
fprintf (stderr , "%s: Error in ’−−lambdastop’ option.\n", progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−−wlenlinz")) {
chirpflag = 1;
}
else if (¬strcmp(argv [no arg − argc], "−−freqlinz")) {
chirpflag = 0;
}
else if (¬strcmp(argv [no arg − argc], "−N")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&nn)) {
fprintf (stderr , "%s: Error in ’−N’ option.\n", progname);
exit (FAILURE);
}
}
else if (¬strcmp(argv [no arg − argc], "−M")) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&mm)) {
fprintf (stderr , "%s: Error in ’−M’ option.\n", progname);
exit (FAILURE);
}
}
else {
fprintf (stderr , "%s: Specified option invalid!\n", progname);
showsomehelp ();
exit (FAILURE);
}
}
〈Create outfile suffixes 117 〉
〈Display parameters parsed from the command line 129 〉
}

This code is used in section 45.

108 PARSING COMMAND LINE OPTIONS MAGBRAGG §117

117. Create suffixes for output filenames. The output files for the Stokes parameters are named according
to the convention that....

〈Create outfile suffixes 117 〉 ≡
{
sprintf (outfilename s0 , "%s.s0.dat", outfilename);
sprintf (outfilename s1 , "%s.s1.dat", outfilename);
sprintf (outfilename s2 , "%s.s2.dat", outfilename);
sprintf (outfilename s3 , "%s.s3.dat", outfilename);
sprintf (outfilename v0 , "%s.v0.dat", outfilename);
sprintf (outfilename v1 , "%s.v1.dat", outfilename);
sprintf (outfilename v2 , "%s.v2.dat", outfilename);
sprintf (outfilename v3 , "%s.v3.dat", outfilename);
sprintf (outfilename w0 , "%s.w0.dat", outfilename);
sprintf (outfilename w1 , "%s.w1.dat", outfilename);
sprintf (outfilename w2 , "%s.w2.dat", outfilename);
sprintf (outfilename w3 , "%s.w3.dat", outfilename);
}

This code is used in section 116.

118. Parse the command line for options related to apodization [15] of the spatial modulation of the
refractive index and gyration coefficient.

〈Parse apodization options 118 〉 ≡
{
apodize = 1;
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&apolength)) {
fprintf (stderr , "%s: Error in ’−−apodize’ option.\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

119. Parse the command line for options related to discrete phase jump in the spatial modulation of the
refractive index and gyration coefficient.

〈Parse phase jump options 119 〉 ≡
{
phasejump = 1;
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&phasejumpangle)) {
fprintf (stderr , "%s: Error in 1st arg of ’−−phasejump’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&phasejumpposition)) {
fprintf (stderr , "%s: Error in 2nd arg of ’−−phasejump’ option.\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

§120 MAGBRAGG PARSING COMMAND LINE OPTIONS 109

120. Parse the command line for options related to a Lorentzian perturbation of the magneto-optical
gyration coefficient of the grating.

〈Parse gyration constant perturbation options 120 〉 ≡
{
perturbed gyration constant = 1;
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gyroperturb position)) {
fprintf (stderr , "%s: Error in ’−−gyroperturb’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gyroperturb amplitude)) {
fprintf (stderr , "%s: Error in ’−−gyroperturb’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gyroperturb width)) {
fprintf (stderr , "%s: Error in ’−−gyroperturb’ option.\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

110 PARSING COMMAND LINE OPTIONS MAGBRAGG §121

121. Parse the command line for options related to saving the intra grating optical field spatial evolution
to file. If Stokes parameters are preferred for the output of the spatial intra-grating field evolution, the
specified filename will be used as the base name for the output file; the suffixes .s0.dat, .s1.dat, .s2.dat,
and .s3.dat will then be appended to the base name in order to keep track of them.

〈Parse field evolution saving options 121 〉 ≡
{

−−argc ;
if (¬strcmp(argv [no arg − argc], "efield")) {
fieldevoflag efield = 1;
}
else if (¬strcmp(argv [no arg − argc], "stoke")) {
fieldevoflag stoke = 1;
}
else {
fprintf (stderr , "%s: Unknown field evolution flag ’%s’ in second argument of\

\n"" −−fieldevolution option.\n", progname , argv [no arg − argc]);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&nne)) {
fprintf (stderr , "%s: Error in ’−−fieldevolution’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
strcpy (fieldevofilename , argv [no arg − argc]);
fieldevoflag = 1; /∗ Indicate that the field evolution shold be saved ∗/
if (fieldevoflag stoke) { /∗ Stokes parameter output preferred ∗/
sprintf (fieldevofilename s0 , "%s.s0.dat", fieldevofilename);
sprintf (fieldevofilename s1 , "%s.s1.dat", fieldevofilename);
sprintf (fieldevofilename s2 , "%s.s2.dat", fieldevofilename);
sprintf (fieldevofilename s3 , "%s.s3.dat", fieldevofilename);
}
}

This code is used in section 116.

§122 MAGBRAGG PARSING COMMAND LINE OPTIONS 111

122. Parse the command line for options related to the initiation of a stepwise grating, consisting of a set
of stacked layers.

〈Parse for stepwise grating options 122 〉 ≡
{
strcpy (gratingtype , argv [no arg − argc]);
−−argc ;
if (¬strcmp(argv [no arg − argc], "twolevel")) {
strcpy (gratingsubtype , argv [no arg − argc]);
−−argc ;
if (strcmp(argv [no arg − argc], "t1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’t1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&t1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for t1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "t2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’t2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&t2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for t2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "n1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "n2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n2)) {

112 PARSING COMMAND LINE OPTIONS MAGBRAGG §122

fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pe1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pe2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe2).\n", progname);
exit (FAILURE);
}

§122 MAGBRAGG PARSING COMMAND LINE OPTIONS 113

−−argc ;
if (strcmp(argv [no arg − argc], "pm1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm1).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm2).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe1).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm1")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm1’).\n", progname);

114 PARSING COMMAND LINE OPTIONS MAGBRAGG §122

exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm1)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm2")) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm2)) {
fprintf (stderr , "%s: Error in ’twolevel’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm2).\n", progname);
exit (FAILURE);
}
}
else {
fprintf (stderr , "%s: Error in ’−g’ or ’−−grating’ option.\n", progname);
fprintf (stderr , "%s: (No valid stepwise grating type found!)\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

§123 MAGBRAGG PARSING COMMAND LINE OPTIONS 115

123. Parse the command line for options related to the initiation of a sinusoidal grating, consisting of a
set of stacked layers.

〈Parse for sinusoidal grating options 123 〉 ≡
{
strcpy (gratingtype , argv [no arg − argc]);
−−argc ;
if (strcmp(argv [no arg − argc], "n")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&nper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [3rd arg]).\n", progname);
exit (FAILURE);

116 PARSING COMMAND LINE OPTIONS MAGBRAGG §123

}
−−argc ;
if (strcmp(argv [no arg − argc], "pe")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&peper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pmper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);

§123 MAGBRAGG PARSING COMMAND LINE OPTIONS 117

fprintf (stderr , "%s: (Expecting string ’qe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qeper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm")) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm1)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm2)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qmper)) {
fprintf (stderr , "%s: Error in ’sinusoidal’ option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [3rd arg]).\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

118 PARSING COMMAND LINE OPTIONS MAGBRAGG §124

124. Parse the command line for options related to the initiation of a sinusoidal grating, consisting of a
set of stacked layers.

〈Parse for chirped grating options 124 〉 ≡
{
strcpy (gratingtype , argv [no arg − argc]);
−−argc ;
if (strcmp(argv [no arg − argc], "n")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&nper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&ncrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [4th arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [2nd arg]).\n", progname);
exit (FAILURE);

§124 MAGBRAGG PARSING COMMAND LINE OPTIONS 119

}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&gcrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [4th arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pe")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&peper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pecrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe [4th arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);

120 PARSING COMMAND LINE OPTIONS MAGBRAGG §124

fprintf (stderr , "%s: (Could not read data for pm [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pmper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pmcrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm [4th arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qeper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qecrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe [4th arg]).\n", progname);
exit (FAILURE);
}
−−argc ;

§124 MAGBRAGG PARSING COMMAND LINE OPTIONS 121

if (strcmp(argv [no arg − argc], "qm")) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm1)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [1st arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm2)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [2nd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qmper)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [3rd arg]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qmcrp)) {
fprintf (stderr , "%s: Error in ’chirped’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm [4th arg]).\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

122 PARSING COMMAND LINE OPTIONS MAGBRAGG §125

125. Parse the command line for options related to the initiation of a fractal grating, consisting of a set
of stacked homogeneous layers of thicknesses corresponding to a Cantor-set fractal.

〈Parse for fractal grating options 125 〉 ≡
{
strcpy (gratingtype , argv [no arg − argc]);
−−argc ;
if (¬strcmp(argv [no arg − argc], "cantor")) {
strcpy (gratingsubtype , argv [no arg − argc]);
−−argc ;
if (strcmp(argv [no arg − argc], "fractal_level")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’fractal_level’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&fractal level)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for fractal_level).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "maximum_fractal_level")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’maximum_fractal_level’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&maximum fractal level)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for maximum_fractal_level).\n", progname);
exit (FAILURE);
}
nn = 1;
for (j = 1; j ≤ fractal level ; j++) nn = 2 ∗ nn ;
−−argc ;
if (strcmp(argv [no arg − argc], "t1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’t1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&t1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for t1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "t2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’t2’).\n", progname);
exit (FAILURE);
}

§125 MAGBRAGG PARSING COMMAND LINE OPTIONS 123

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&t2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for t2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "n1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "n2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&n2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for n2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&g2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for g2).\n", progname);

124 PARSING COMMAND LINE OPTIONS MAGBRAGG §125

exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pe1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pe2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pe2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm1).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm2")) {
fprintf (stderr , "%s: Error.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&pm2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm2).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe1")) {

§125 MAGBRAGG PARSING COMMAND LINE OPTIONS 125

fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe1).\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qe2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe2).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm1")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm1’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm1)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm1).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm2")) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm2’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&qm2)) {
fprintf (stderr , "%s: Error in ’cantor’ grating option.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm2).\n", progname);
exit (FAILURE);
}
}
else {
fprintf (stderr , "%s: Error in ’fractal’ grating option.\n", progname);
fprintf (stderr , "%s: (No valid fractal type found!)\n", progname);
fprintf (stderr , "%s: (Currently only Cantor type implemented)\n", progname);
exit (FAILURE);

126 PARSING COMMAND LINE OPTIONS MAGBRAGG §125

}
}

This code is used in section 116.

§126 MAGBRAGG PARSING COMMAND LINE OPTIONS 127

126. Parse the command line for options related to the manual modification of an arbitrary discrete layer
of the grating structure (which may be of type stepwise twolevel, sinusoidal, chirped, or any other, arbitrary
type).

〈Parse for options for modified layer of grating structure 126 〉 ≡
{

−−argc ;
if (strcmp(argv [no arg − argc], "num")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’num’ after ’−−modifylayer’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&modnum)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for num).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "t")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’t’ [for layer thickness]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modt1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for t [layer thickness]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "n")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’n’ [for refractive index]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modn1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for n [refractive index]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "g")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’g’ [for gyration constant]).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modg1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for g [gyration constant]).\n", progname);
exit (FAILURE);

128 PARSING COMMAND LINE OPTIONS MAGBRAGG §126

}
−−argc ;
if (strcmp(argv [no arg − argc], "pe")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modpe1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for pe).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "pm")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’pm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modpm1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for pm).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qe")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qe’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modqe1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for qe).\n", progname);
exit (FAILURE);
}
−−argc ;
if (strcmp(argv [no arg − argc], "qm")) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Expecting string ’qm’).\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&modqm1)) {
fprintf (stderr , "%s: Error in ’−−modifylayer’.\n", progname);
fprintf (stderr , "%s: (Could not read data for qm).\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

§127 MAGBRAGG PARSING COMMAND LINE OPTIONS 129

127. Parse the command line for options specifying the transmitted optical intensity range. The command
line syntax for specification of the transmitted optical intensity range is

−−trmintensity 〈Istart〉 〈Istop〉 〈Mi〉
where the numerical values supplied are internally kept by the variables trmintenstart , trmintenstop , and
mmi , respectively.

〈Parse the command line for transmitted intensity range 127 〉 ≡
{

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&trmintenstart)) {
fprintf (stderr , "%s: Error in ’−−trmintensity’ option.\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&trmintenstop)) {
fprintf (stderr , "%s: Error in ’−−trmintensity’ option.\n", 3 9progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&mmi)) {
fprintf (stderr , "%s: Error in ’−−trmintensity’ option.\n", 3 9progname);
exit (FAILURE);
}
}

This code is used in section 116.

128. Parse the command line for options specifying the ellipticity range of the transmitted polarization
state. The command line syntax for specification of the ellipticity of the transmitted polarization state is
analogous to that of the transmitted intensity,

−−trmellipticity 〈ǫstart〉 〈ǫstop〉 〈Me〉
where the numerical values supplied are internally kept by the variables trmellipstart , trmellipstop , and
mme , respectively.

〈Parse the command line for transmitted ellipticity range 128 〉 ≡
{

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&trmellipstart)) {
fprintf (stderr , "%s: Error in ’−−trmellipticity’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%lf",&trmellipstop)) {
fprintf (stderr , "%s: Error in ’−−trmellipticity’ option.\n", progname);
exit (FAILURE);
}
−−argc ;
if (¬sscanf (argv [no arg − argc], "%ld",&mme)) {
fprintf (stderr , "%s: Error in ’−−trmellipticity’ option.\n", progname);
exit (FAILURE);
}
}

This code is used in section 116.

130 PARSING COMMAND LINE OPTIONS MAGBRAGG §129

129. If the flag verbose is set to true (1 in C), then display the information parsed from the command
line, such as output filenames, indices of refraction, grating period, etc. This is useful for later on creating
log files of sessions with the executable program MAGBRAGG.

〈Display parameters parsed from the command line 129 〉 ≡
{
if (verbose) {
for (k = 1; k ≤ 64; k++) fprintf (stdout , (k < 64 ? "−" : "\n"));
fprintf (stdout , "Input parameters:\n");
fprintf (stdout , "Grating type: %s\n", gratingtype);
if (¬strcmp(gratingtype , "sinusoidal")) {
fprintf (stdout , "Bias refractive index: %10.6e\n", n1);
fprintf (stdout , "Refractive index modulation: %10.6e\n", n2);
fprintf (stdout , "Modulation period: %10.6e [m]\n", nper);
}
else if (¬strcmp(gratingtype , "chirped")) { }
else if (¬strcmp(gratingtype , "stepwise")) { }
else if (¬strcmp(gratingtype , "fractal")) { }
else {
fprintf (stdout , "%s: Error: Unknown grating type ’%s’\n", progname , gratingtype);
}
fprintf (stdout , "Geometrical length: ""L=%10.6e [m]\n", ll);
fprintf (stdout , "Surrounding refractive index: ""nsurr=%10.6e\n", nsurr);
fprintf (stdout , "Begin wavelength of spectrum: ""lambda_start=%10.6e [m]\n", lambdastart);
fprintf (stdout , "End wavelength of spectrum: ""lambda_stop=%10.6e [m]\n", lambdastop);
fprintf (stdout , "Number of samples in spectrum: ""M=%−12ld\n",mm);
fprintf (stdout , "Number of discrete layers: ""N=%−12ld\n", nn);
if (trmtraject specified) {
fprintf (stdout , "Trajectory for transmitted Stokes parameters: %s\n", trmtraject filename);
}
else {
fprintf (stdout , "Number of samples in output intensity: ""mmi=%−12ld\n",mmi);
fprintf (stdout , "Number of samples in output ellipticity: ""mme=%−12ld\n",mme);
}
fprintf (stdout , "Stokes parameters will be written to files:\n");
fprintf (stdout , " %s [S0 (incident wave)],\n", outfilename s0);
fprintf (stdout , " %s [S1 (incident wave)],\n", outfilename s1);
fprintf (stdout , " %s [S2 (incident wave)],\n", outfilename s2);
fprintf (stdout , " %s [S3 (incident wave)],\n", outfilename s3);
fprintf (stdout , " %s [V0 (reflected wave)],\n", outfilename v0);
fprintf (stdout , " %s [V1 (reflected wave)],\n", outfilename v1);
fprintf (stdout , " %s [V2 (reflected wave)],\n", outfilename v2);
fprintf (stdout , " %s [V3 (reflected wave)],\n", outfilename v3);
fprintf (stdout , " %s [W0 (transmitted wave)],\n", outfilename w0);
fprintf (stdout , " %s [W1 (transmitted wave)],\n", outfilename w1);
fprintf (stdout , " %s [W2 (transmitted wave)],\n", outfilename w2);
fprintf (stdout , " %s [W3 (transmitted wave)],\n", outfilename w3);
if (fieldevoflag) {
if (fieldevoflag efield) {
if (strcmp(fieldevofilename , "")) {
fprintf (stdout ,

"Intra grating optical field evolution will ""be written to file:\n");
fprintf (stdout , " %s\n", fieldevofilename);

§129 MAGBRAGG PARSING COMMAND LINE OPTIONS 131

}
else {
fprintf (stderr , "%s: Error: No file name specified for s\

aving spatial\n""field evolution. (efield option)\n", progname);
exit (FAILURE);
}
fprintf (stdout , "(Intra grating field evolution will be presented in terms o\

f\n""the electrical field displacement.)\n");
}
else if (fieldevoflag stoke) {
if (strcmp(fieldevofilename s0 , "") ∧ strcmp(fieldevofilename s1 ,

"") ∧ strcmp(fieldevofilename s2 , "") ∧ strcmp(fieldevofilename s3 , "")) {
fprintf (stdout ,

"Intra grating optical field evolution will ""be written to files:\n");
fprintf (stdout , " %s\n %s\n %s\n %s\n", fieldevofilename s0 , fieldevofilename s1 ,

fieldevofilename s2 , fieldevofilename s3);
}
else {
fprintf (stderr , "%s: Error: No file name specified for s\

aving spatial\n""field evolution. (stoke option)\n", progname);
exit (FAILURE);
}
fprintf (stdout , "(Intra grating field evolution will be presented in terms o\

f\n""the Stokes parameters of the forward propagating field.)\n");
}
else {
fprintf (stderr , "%s: Unknown field evolution flag.\n", progname);
exit (FAILURE);
}
fprintf (stdout , "Number of intermediate samples within each layer: %−12ld\n", nne);
}
if (intensityevoflag) {
if (strcmp(intensityevofilename , "")) {
fprintf (stdout ,

"Intra grating optical intensity evolution will ""be written to file:\n");
fprintf (stdout , " %s\n", intensityevofilename);
}
}
fprintf (stdout , "Program execution started %s", ctime (&initime));
for (k = 1; k ≤ 64; k++) fprintf (stdout , (k < 64 ? "−" : "\n"));
}
}

This code is used in section 116.

130. Routines for displaying help message to standard terminal output.

〈Routines for displaying help message 130 〉 ≡
〈Display split help line 131 〉
〈Display full help line 132 〉
〈Display help message 133 〉

This code is used in section 50.

132 PARSING COMMAND LINE OPTIONS MAGBRAGG §131

131. Routine for proper display of split help lines. This is a very simple routine just to keep the
fprintf (stderr , "...", "...") statements to a minimum. The routine also checks that the full length of
the diplayed line does not exceed 80 characters, as conforming to normal line length of terminal output.

〈Display split help line 131 〉 ≡
void hl (char firststring [], char secondstring [])
{
if (strlen (firststring) > 25) {
fprintf (stderr , "%s:******* Error in hl() routine! *******\n", progname);
fprintf (stderr , "%s: The first string argument is too long:\n", progname);
fprintf (stderr , "%s: ’%s’\n", progname , firststring);
fprintf (stderr , "%s: String lengths is %d characters\n", progname , (int) strlen (firststring));
fprintf (stderr , "%s: (Maximum 25 characters for first argument.)\n", progname);
fprintf (stderr , "%s:******** End of error message *********\n", progname);
exit (FAILURE);
}
if (strlen (secondstring) > 55) {
fprintf (stderr , "%s:******* Error in hl() routine! *******\n", progname);
fprintf (stderr , "%s: The second string argument is too long:\n", progname);
fprintf (stderr , "%s: ’%s’\n", progname , secondstring);
fprintf (stderr , "%s: String lengths is %d characters\n", progname , (int) strlen (secondstring));
fprintf (stderr , "%s: (Maximum 55 characters for second argument.)\n", progname);
fprintf (stderr , "%s:******** End of error message *********\n", progname);
exit (FAILURE);
}
fprintf (stderr , "%−25.25s%1.55s\n", firststring , secondstring);
}

This code is used in section 130.

132. Routine for proper display of full help lines. This is similar to the hl () routine, with the only difference
being that a full line of text is flushed instead of a line split into two parts.

〈Display full help line 132 〉 ≡
void fhl (char linestring [])
{
if (strlen (linestring) > 80) {
fprintf (stderr , "%s:******* Error in fhl() routine! *******\n", progname);
fprintf (stderr , "%s: The following help line is too long:\n", progname);
fprintf (stderr , "%s: ’%s’\n", progname , linestring);
fprintf (stderr , "%s: String is %d characters\n", progname , (int) strlen (linestring));
fprintf (stderr , "%s: (Maximum 80 characters per help line is allowed.)\n", progname);
fprintf (stderr , "%s:******** End of error message *********\n", progname);
exit (FAILURE);
}
fprintf (stderr , "%s\n", linestring);
}

This code is used in section 130.

§133 MAGBRAGG PARSING COMMAND LINE OPTIONS 133

133. Show a help message at the screen, giving the full syntax of the command line options that are
accepted by the program.

〈Display help message 133 〉 ≡
void showsomehelp(void)
{
fprintf (stderr , " Usage: %s [options]\n", progname);
fhl (" Options:");
hl (" −h, −−help", "Display this help message and exit clean.");
hl (" −N <int>", "");
hl (" −M <int>", "");
hl (" −v, −−verbose", "");
hl (" −o, −−outputfile <str>", "");
fhl (" −−fieldevolution {efield|stoke} <n> <str>");
fhl (" −−intensityevolution <lambda> <str>");
fhl (" −−normalize_length_to_um");
hl (" −−normalize_intensity", "");
hl ("", "When saving the spatial evolution of the intra−");
hl ("", "grating intensity, normalize the intensity with");
hl ("", "respect to the intensity at z=0, inside the");
hl ("", "grating (that is to say, normalize with respect");
hl ("", "to the initial intra−grating intensity). This");
hl ("", "option *only* affects the fields saved with the");
hl ("", "−−intensityevolution or −−fieldevolution");
hl ("", "options.");
hl (" −r, −−random", "");
hl (" −a, −−apodize <real>", "");
hl ("", "Apodize the grating structure over geometrical");
hl ("", "distance <real> at each end of the grating.");
hl ("", "The option only applies to gratings with sinus−");
hl ("", "oidal modulation of refractive index and");
hl ("", "gyration coefficient, in constant or chirped");
hl ("", "periodic configurations, as specified with the");
hl ("", "’−−grating sinusoidal’ or ’−−grating chirped’");
hl ("", "options respectively.");
hl ("", " The apodization is applied to the refractive");
hl ("", "index modulation and, in cases where the linear");
hl ("", "magneto−optical is spatially modulated as well,");
hl ("", "to the linear gyration coefficient.");
fhl (" −j, −−phasejump <r1 (angle)> <r2 (position)>");
hl ("", "Apply discrete phase jump in the spatial phase");
hl ("", "of the grating profile. This option adds the");
hl ("", "real number <r1> to the argument of the sinus−");
hl ("", "oidal function for the grating profile for all");
hl ("", "spatial coordinates z >= <r2>.");
hl ("", " As in the case of apodization, this option");
hl ("", "only applies to gratings with sinusoidal modu−");
hl ("", "lation of refractive index and gyration coeffi−");
hl ("", "cient, in constant or chirped periodic configu−");
hl ("", "rations, as specified with the ’−−grating");
hl ("", "sinusoidal’ or ’−−grating chirped’ options");
hl ("", "respectively. The discrete phase jump applies");
hl ("", "to the linear linear refractive index modula−");

134 PARSING COMMAND LINE OPTIONS MAGBRAGG §133

hl ("", "tion and, in cases where the linear magneto−");
hl ("", "optical interaction is spatially modulated as");
hl ("", "well, also to the linear gyration coefficient.");
fhl (" −w, −−writegratingfile <str>");
hl (" −−spectrumfile <str>", "");
hl ("", "Generates the complex reflectance as function");
hl ("", "of the vacuum wavelength in meters, and save");
hl ("", "the spectrum in file named according to the");
hl ("", "supplied character string <str>.");
fhl (" −−intensityspectrumfile <str>");
hl ("", "Generates the intensity reflectance as function");
hl ("", "of the vacuum wavelength in meters, and save");
hl ("", "the spectrum in file named according to the");
hl ("", "supplied character string <str>.");
fhl (" −g, −−grating <grating options>");
hl ("", "Specifies the grating type, where");
hl ("", "<grating options> = ");
hl ("", " [stepwise <stepwise options> |");
hl ("", " sinusoidal <sinusoidal options> |");
hl ("", " chirped <chirped options>]");
hl ("", "<stepwise options> = ");
hl ("", " twolevel t1 <f> t2 <f>");
hl ("", " n1 <f> n2 <f> g1 <f> g2 <f>");
hl ("", " pe1 <f> pe2 <f> pm1 <f> pm2 <f>");
hl ("", " qe1 <f> qe2 <f> qm1 <f> qm2 <f>");
hl ("", "<sinusoidal options> = ");
hl ("", " n <n0> <dn> <nper>");
hl ("", " g <g0> <dg> <gper>");
hl ("", " pe <pe0> <dpe> <peper>");
hl ("", " pm <pm0> <dpm> <pmper>");
hl ("", " qe <qe0> <dqe> <qeper>");
hl ("", " qm <qm0> <dqm> <qmper>");
hl ("", "<chirped options> = ");
hl ("", " n <n0> <dn> <nper> <ncrp>");
hl ("", " g <g0> <dg> <gper> <gcrp>");
hl ("", " pe <pe0> <dpe> <peper> <pecrp>");
hl ("", " pm <pm0> <dpm> <pmper> <pmcrp>");
hl ("", " qe <qe0> <dqe> <qeper> <qecrp>");
hl ("", " qm <qm0> <dqm> <qmper> <qmcrp>");
hl (" −L,−−gratinglength <f>", "Physical length of grating in meter [m]");
fhl (" −−refindsurr <f>");
fhl (" −−trmtraject <str>");
fhl (" −−trmintensity <istart> <istop> <mmi>");
fhl (" (intensity measured in Watts per square meter)");
fhl (" −−trmellipticity <estart> <estop> <mme>");
fhl (" −−lambdastart <lambda>");
fhl (" (start vacuum wavelength measured in meter)");
fhl (" −−lambdastop <lambda>");
fhl (" (stop vacuum wavelength measured in meter)");
exit (FAILURE);
}

This code is used in section 130.

§134 MAGBRAGGCHECK FOR SPECIFIED TRAJECTORY OF TRANSMITTED STOKES PARAMETERS 135

134. Check for specified trajectory of transmitted Stokes parameters.

〈Check for specified trajectory of transmitted Stokes parameters 134 〉 ≡
{
mmtraject = 0;
if (trmtraject specified) { /∗ Was a trajectory specified at all? ∗/
if ((fp traject = fopen (trmtraject filename , "r")) ≡ Λ) {
fprintf (stderr ,

"%s: Could not open file %s for reading Stokes parameter"" trajectory of tran\

smitted wave!\n", progname , trmtraject filename);
exit (FAILURE);
}
fseek (fp traject , 0L, SEEK_SET);
/∗ Scan the specified file for the number of points of the trajectory ∗/

while ((tmpch = getc(fp traject)) 6= EOF) {
ungetc (tmpch , fp traject);
fscanf (fp traject , "%lf",&tmp); /∗ Read away the W0 parameter ∗/
fscanf (fp traject , "%lf",&tmp); /∗ Read away the W3 parameter ∗/
mmtraject ++; /∗ Read away blanks and linefeeds ∗/
tmpch = getc (fp traject);
while ((tmpch 6= EOF) ∧ (¬numeric(tmpch))) {
tmpch = getc (fp traject);
}
if (tmpch 6= EOF) ungetc (tmpch , fp traject);
}
if (verbose) {
fprintf (stdout , "%s: I have now pre−parsed the specified trajectory of trans\

mitted\n""Stokes parameters (W0,W3) in file %s, and I found %−ld points.\n",
progname , trmtraject filename ,mmtraject);

fprintf (stdout , "%s: Now allocating the vectors for the transmitted trajectory...",
progname);

}
fseek (fp traject , 0L, SEEK_SET); /∗ Rewind the file for reading ∗/
w0traj = dvector (1,mmtraject); /∗ Allocate memory for w0traj ∗/
w3traj = dvector (1,mmtraject); /∗ Allocate memory for w3traj ∗/
for (ke = 1; ke ≤ mmtraject ; ke++) {
fscanf (fp traject , "%le",&w0traj [ke]); /∗ Read the W0 parameter ∗/
fscanf (fp traject , "%le",&w3traj [ke]); /∗ Read the W3 parameter ∗/
}
if (0 ≡ 1) {
for (ke = 1; ke ≤ mmtraject ; ke++) fprintf (stdout , "w0=%e w3=%e\n",w0traj [ke],w3traj [ke]);
}
fclose (fp traject);
}
}

This code is used in section 45.

136 OPENING AND CLOSING FILES FOR DATA OUTPUT MAGBRAGG §135

135. Opening and closing files for data output. Open output files, to be used later on for saving
Stokes parameters on disk. The naming convention of the files is that the outfilename string (at the command
line specified using the −o 〈outfilename 〉 or −−outputfile 〈outfilename 〉 option) is the base name, with
suffixes .s0.dat, .s1.dat, etc., indicating the actual Stoke parameter which was written to respective file.
The following string variables contain the filenames of the files where to store the calculated data:

outfilename s0 The S0 Stokes parameter of the incident optical wave, governing the optical
intensity.

outfilename s1 The S1 Stokes parameter of the incident optical wave, together with S2 governing
the orientation of the main axis of the polarization ellipse.

outfilename s2 The S2 Stokes parameter of the incident optical wave, together with S1 governing
the orientation of the main axis of the polarization ellipse.

outfilename s3 The S3 Stokes parameter of the incident optical wave, governing the polarization
state ellipticity.

outfilename v0 The V0 Stokes parameter of the reflected optical wave, governing the optical
intensity.

outfilename v1 The V1 Stokes parameter of the reflected optical wave, together with V2 governing
the orientation of the main axis of the polarization ellipse.

outfilename v2 The V2 Stokes parameter of the reflected optical wave, together with V1 governing
the orientation of the main axis of the polarization ellipse.

outfilename v3 The V3 Stokes parameter of the reflected optical wave, governing the polarization
state ellipticity.

outfilename w0 The W0 Stokes parameter of the transmitted optical wave, governing the optical
intensity.

outfilename w1 The W1 Stokes parameter of the transmitted optical wave, together with W2

governing the orientation of the main axis of the polarization ellipse.

outfilename w2 The W2 Stokes parameter of the transmitted optical wave, together with W1

governing the orientation of the main axis of the polarization ellipse.

outfilename w3 The W3 Stokes parameter of the transmitted optical wave, governing the polar-
ization state ellipticity.

The reason for using separate files for the Stokes parameters is that in many cases sets or matrices of Stokes
parameters will be generated for certain material or geometrical parameters, resulting in several different
topological surfaces of, for example, transmitted intensity W0 as function of input intensity S0 and ellipticity
S3/S0, in which case it is convenient to load separate Stokes parameters from separate files.

〈Open files for output 135 〉 ≡
{
if ((mme > 1) ∧ (mmi > 1)) {
if ((fp s0 = fopen (outfilename s0 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving incident wave!\n", progname ,

outfilename s0);
exit (FAILURE);
}
if ((fp s1 = fopen (outfilename s1 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving incident wave!\n", progname ,

outfilename s1);
exit (FAILURE);
}
if ((fp s2 = fopen (outfilename s2 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving incident wave!\n", progname ,

outfilename s2);

§135 MAGBRAGG OPENING AND CLOSING FILES FOR DATA OUTPUT 137

exit (FAILURE);
}
if ((fp s3 = fopen (outfilename s3 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving incident wave!\n", progname ,

outfilename s3);
exit (FAILURE);
}
if ((fp v0 = fopen (outfilename v0 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving reflected wave!\n", progname ,

outfilename v0);
exit (FAILURE);
}
if ((fp v1 = fopen (outfilename v1 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving reflected wave!\n", progname ,

outfilename v1);
exit (FAILURE);
}
if ((fp v2 = fopen (outfilename v2 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving reflected wave!\n", progname ,

outfilename v2);
exit (FAILURE);
}
if ((fp v3 = fopen (outfilename v3 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving reflected wave!\n", progname ,

outfilename v3);
exit (FAILURE);
}
if ((fp w0 = fopen (outfilename w0 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving transmitted wave!\n", progname ,

outfilename w0);
exit (FAILURE);
}
if ((fp w1 = fopen (outfilename w1 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving transmitted wave!\n", progname ,

outfilename w1);
exit (FAILURE);
}
if ((fp w2 = fopen (outfilename w2 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving transmitted wave!\n", progname ,

outfilename w2);
exit (FAILURE);
}
if ((fp w3 = fopen (outfilename w3 , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for saving transmitted wave!\n", progname ,

outfilename w3);
exit (FAILURE);
}
}
if ((mme > 1) ∧ (mmi > 1)) {
fseek (fp s0 , 0L, SEEK_SET);
fseek (fp s1 , 0L, SEEK_SET);
fseek (fp s2 , 0L, SEEK_SET);

138 OPENING AND CLOSING FILES FOR DATA OUTPUT MAGBRAGG §135

fseek (fp s3 , 0L, SEEK_SET);
fseek (fp v0 , 0L, SEEK_SET);
fseek (fp v1 , 0L, SEEK_SET);
fseek (fp v2 , 0L, SEEK_SET);
fseek (fp v3 , 0L, SEEK_SET);
fseek (fp w0 , 0L, SEEK_SET);
fseek (fp w1 , 0L, SEEK_SET);
fseek (fp w2 , 0L, SEEK_SET);
fseek (fp w3 , 0L, SEEK_SET);
}
if (fieldevoflag) {
if (fieldevoflag efield) {
if (strcmp(fieldevofilename , "")) {
if ((fp evo = fopen (fieldevofilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for fieldevo output!\n", progname ,

fieldevofilename);
exit (FAILURE);
}
}
}
else if (fieldevoflag stoke) {
if (strcmp(fieldevofilename s0 , "")) {
if ((fp evo s0 = fopen (fieldevofilename s0 , "w")) ≡ Λ) {
fprintf (stderr ,

"%s: Could not open file %s for saving spatial S0"" distribution!\n",
progname , fieldevofilename);

exit (FAILURE);
}
}
else {
fprintf (stderr ,

"%s: A name for the file for saving spatial S0 distribution"" is required!\n",
progname);

exit (FAILURE);
}
if (strcmp(fieldevofilename s1 , "")) {
if ((fp evo s1 = fopen (fieldevofilename s1 , "w")) ≡ Λ) {
fprintf (stderr ,

"%s: Could not open file %s for saving spatial S1"" distribution!\n",
progname , fieldevofilename);

exit (FAILURE);
}
}
else {
fprintf (stderr ,

"%s: A name for the file for saving spatial S1 distribution"" is required!\n",
progname);

exit (FAILURE);
}
if (strcmp(fieldevofilename s2 , "")) {
if ((fp evo s2 = fopen (fieldevofilename s2 , "w")) ≡ Λ) {

§135 MAGBRAGG OPENING AND CLOSING FILES FOR DATA OUTPUT 139

fprintf (stderr ,
"%s: Could not open file %s for saving spatial S2"" distribution!\n",
progname , fieldevofilename);

exit (FAILURE);
}
}
else {
fprintf (stderr ,

"%s: A name for the file for saving spatial S2 distribution"" is required!\n",
progname);

exit (FAILURE);
}
if (strcmp(fieldevofilename s3 , "")) {
if ((fp evo s3 = fopen (fieldevofilename s3 , "w")) ≡ Λ) {
fprintf (stderr ,

"%s: Could not open file %s for saving spatial S3"" distribution!\n",
progname , fieldevofilename);

exit (FAILURE);
}
}
else {
fprintf (stderr ,

"%s: A name for the file for saving spatial S3 distribution"" is required!\n",
progname);

exit (FAILURE);
}
}
else {
fprintf (stderr , "%s: Unknown field evolution flag.\n", progname);
exit (FAILURE);
}
}
if (intensityevoflag) {
if (strcmp(intensityevofilename , "")) {
if ((fp ievo = fopen (intensityevofilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for intensityevo output!\n", progname ,

intensityevofilename);
exit (FAILURE);
}
}
}
if (¬((mme > 1) ∧ (mmi > 1))) {
if ((fp spec = fopen (spectrumfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for spectrum output!\n", progname ,

spectrumfilename);
exit (FAILURE);
}
if ((fp irspec = fopen (intensity reflection spectrumfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for intensity reflection spectrum!\n", progname ,

intensity reflection spectrumfilename);
exit (FAILURE);
}

140 OPENING AND CLOSING FILES FOR DATA OUTPUT MAGBRAGG §135

if ((fp itspec = fopen (intensity transmission spectrumfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for intensity transmission spectrum!\n",

progname , intensity transmission spectrumfilename);
exit (FAILURE);
}
if ((fp icspec = fopen (intensity check spectrumfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open %s for checking spectra!\n", progname ,

intensity check spectrumfilename);
exit (FAILURE);
}
}
}

This code is used in section 45.

136. Close all open files.

〈Close output files 136 〉 ≡
{
if ((mme > 1) ∧ (mmi > 1)) {
fclose (fp s0);
fclose (fp s1);
fclose (fp s2);
fclose (fp s3);
fclose (fp v0);
fclose (fp v1);
fclose (fp v2);
fclose (fp v3);
fclose (fp w0);
fclose (fp w1);
fclose (fp w2);
fclose (fp w3);
}
if (fieldevoflag)
if (strcmp(fieldevofilename , "")) fclose (fp evo);

if (intensityevoflag)
if (strcmp(intensityevofilename , "")) fclose (fp ievo);

if (¬((mme > 1) ∧ (mmi > 1))) {
fclose (fp spec);
fclose (fp irspec);
fclose (fp itspec);
fclose (fp icspec);
}
}

This code is used in section 45.

§137 MAGBRAGG REFERENCES 141

137. References.

[1] F. Jonsson and C. Flytzanis, Polarization State Controlled Multistability of a Nonlinear Magneto-optic

Cavity, Phys. Rev. Lett. 82, 1426 (1999).

[2] F. Jonsson and C. Flytzanis, Nonlinear Magneto-Optical Bragg Gratings, Phys. Rev. Lett. 96, 063902
(2006).

[3] Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), ISBN0-471-88998-9.

[4] A.K. Zvezdin and V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials, (Institute of
Physics Publishing, London, 1997), ISBN0-7503-0362-X.

[5] J. D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975) ISBN0-471-43132-X.

[6] F. Jonsson and C.Flytzanis, Optical amplitude and phase evolution in nonlinear magneto-optical Bragg

gratings, J. Nonlin. Opt. Physics and Materials 13, 129 (2004).

[7] F. Jonsson and C. Flytzanis, Spectral windowing with chirped magneto-optical Bragg gratings, J. Opt.
Soc. Am. B 22, 293 (2005).

[8] F. Jonsson and C.Flytzanis, Artificially Induced Perturbations in Chirped Magneto-Optical Bragg Grat-

ings, inMagneto-Optical Materials for Photonics and Recording, Eds. Koji Ando, W. Challener, R. Gam-
bino and M. Levy, Mater. Res. Soc. Symp. Proc. 834, J1.8 (Materials Research Society, Warrendale,
2005).

[9] F. Jonsson, The Nonlinear Optics of Magneto-Optic Media, PhD Thesis (Royal Institute of Technology,
Stockholm, 2000), ISBN91-7170-575-9.

[10] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, New York,
1990), ISBN0-521-42424-0.

[11] E. T. Whittaker, A Course of Modern Analysis–An Introduction to the General Theory of Infinite

Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 1st
Edn. (Cambridge University Press, Cambridge, 1902).

[12] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis–An Introduction to the General

Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental

Functions, 4th Reprinted Edn. (Cambridge University Press, Cambridge, 1996), ISBN 0-521-58807-3.

[13] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd Edn.
(Springer–Verlag, Berlin, 1971), ISBN 3-540-05318-2.

[14] M. McCall, J. Lightwave Technol. 18, 236 (2000).

[15] A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, Boston, 1999), ISBN0-89006-344-3.

142 INDEX MAGBRAGG §138

138. Index.

a: 99, 100, 102, 103, 105, 106, 109, 110.
aabm2 : 51, 79.
aabp2 : 51, 79.
aafm2 : 51, 79.
aafp2 : 51, 79.
ab : 102, 103.
AM: 93.
apodize : 55, 61, 66, 67, 118.
apolength : 51, 66, 67, 118.
argc : 45, 116, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128.
argv : 45, 90, 116, 118, 119, 120, 121, 122, 123,

124, 125, 126, 127, 128.
b: 99, 100, 102, 103, 105, 106.
c: 52, 95, 96, 97, 98, 99, 100, 102, 103, 105,

106, 107, 109, 110.
cabs2 : 83, 84, 98.
cadd : 81, 99.
cdabs : 79, 85, 97, 98, 105.
cdiv : 105.
cexp : 108, 109.
ch : 88, 91.
chirpflag : 55, 61, 116.
cmul : 77, 80, 81, 83, 84, 102.
complex : 76, 95.
conjg : 83, 84, 96.
COPYRIGHT: 47, 116.
cos : 66, 67, 109, 110.
crdiv : 77, 81, 105, 106.
crexpi : 77, 80, 81, 84, 108, 110.
csqrt : 107.
csub : 81, 100.
ctime : 73, 82, 129.
DCOMPLEX: 48.
dcomplex: 48, 54, 60, 94, 95, 96, 97, 98, 99, 100,

102, 103, 105, 106, 107, 109, 110, 113, 115.
dcvector : 62, 112, 113.
den : 105.
difftime : 73, 82.
display surrounding media : 55, 61, 86, 116.
dll : 89.
dvector : 62, 112, 134.
dz : 57, 62, 65, 66, 67, 68, 77, 80, 81, 84.
ebm : 54, 62, 63, 76, 77, 78, 79, 80, 81, 83, 84.
ebp : 54, 62, 63, 76, 77, 78, 79, 80, 81, 83, 84.
efm : 54, 62, 63, 76, 77, 78, 79, 80, 81, 83, 84, 85.
efp : 54, 62, 63, 76, 77, 78, 79, 80, 81, 83, 84, 85.
EOF: 134.
EPS: 93.
epsilon0 : 52, 75, 76, 83.
eta : 53, 82.

etabm : 57, 62, 63, 79, 80, 84.
etabp : 57, 62, 63, 79, 80, 84.
etafm : 57, 62, 63, 79, 80, 84.
etafp : 57, 62, 63, 79, 80, 84.
exit : 46, 64, 65, 84, 85, 86, 87, 89, 105, 106, 112,

113, 116, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 131, 132, 133, 134, 135.

exp : 109.
fabs : 67, 85, 97, 98, 105, 106, 107.
FAILURE: 47, 64, 65, 84, 85, 86, 87, 89, 105, 106,

112, 113, 116, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 131, 132, 133, 134, 135.

fclose : 86, 87, 134, 136.
fflush : 26, 83.
fhl : 26, 132, 133.
fieldevofilename : 59, 61, 84, 121, 129, 135, 136.
fieldevofilename s0 : 59, 61, 84, 121, 129, 135.
fieldevofilename s1 : 59, 61, 84, 121, 129, 135.
fieldevofilename s2 : 59, 61, 84, 121, 129, 135.
fieldevofilename s3 : 59, 61, 84, 121, 129, 135.
fieldevoflag : 55, 61, 84, 121, 129, 135, 136.
fieldevoflag efield : 55, 61, 84, 121, 129, 135.
fieldevoflag stoke : 55, 61, 84, 121, 129, 135.
filename : 92.
firststring : 131.
floor : 65.
fopen : 86, 87, 134, 135.
fp evo : 58, 84, 135, 136.
fp evo s0 : 58, 84, 135.
fp evo s1 : 58, 84, 135.
fp evo s2 : 58, 84, 135.
fp evo s3 : 58, 84, 135.
fp gr : 58, 86.
fp icspec : 58, 83, 135, 136.
fp ievo : 58, 85, 135, 136.
fp irspec : 58, 83, 135, 136.
fp itspec : 58, 83, 135, 136.
fp spec : 58, 83, 135, 136.
fp s0 : 58, 61, 83, 135, 136.
fp s1 : 58, 61, 83, 135, 136.
fp s2 : 58, 61, 83, 135, 136.
fp s3 : 58, 61, 83, 135, 136.
fp traject : 58, 134.
fp v0 : 58, 61, 83, 135, 136.
fp v1 : 58, 61, 83, 135, 136.
fp v2 : 58, 61, 83, 135, 136.
fp v3 : 58, 61, 83, 135, 136.
fp w0 : 58, 61, 83, 135, 136.
fp w1 : 58, 61, 83, 135, 136.
fp w2 : 58, 61, 83, 135, 136.
fp w3 : 58, 61, 83, 135, 136.

§138 MAGBRAGG INDEX 143

fprintf : 46, 64, 65, 66, 67, 68, 73, 82, 83, 84, 85,
86, 87, 89, 105, 106, 112, 113, 116, 118, 119,
120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 131, 132, 133, 134, 135.

fractal level : 51, 68, 125.
free : 46, 114, 115.
free dcvector : 63, 115.
free dvector : 63, 114.
fscanf : 134.
fseek : 134, 135.
g: 57.
gcrp : 51, 67, 124.
getc : 134.
gper : 51, 66, 67, 123, 124.
gratingfilename : 59, 86, 116.
gratingsubtype : 59, 65, 122, 125.
gratingtype : 59, 64, 122, 123, 124, 125, 129.
gyroperturb amplitude : 51, 69, 120.
gyroperturb position : 51, 69, 120.
gyroperturb width : 51, 69, 120.
g1 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
g2 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
hl : 26, 131, 132, 133.
i: 48.
IA: 93.
idum : 93.
ievolambda : 51, 85, 116.
im : 95.
IM: 93.
indxmax : 89.
indxmid : 89.
indxmin : 89.
init cantor fractal grating : 26, 68, 89.
initime : 53, 73, 82, 129.
intensinfologfile : 58, 87.
intensinfologfilename : 59, 87, 116.
intensity check spectrumfilename : 59, 61, 116,

135.
intensity reflection spectrumfilename : 59, 61,

116, 135.
intensity transmission spectrumfilename : 59,

61, 116, 135.
intensityevofilename : 59, 85, 116, 129, 135, 136.
intensityevoflag : 55, 61, 85, 116, 129, 135, 136.
intensityinfo : 55, 61, 83, 87, 116.
IQ: 93.
IR: 93.
isalnum : 46, 91, 92.
iv : 93.
iy : 93.
j: 60, 92, 93.
jje : 51, 84.

k: 60, 92, 93.
ke : 60, 72, 74, 75, 82, 134.
ki : 60, 75, 82, 83.
lambda : 51, 72, 83, 85.
lambdastart : 51, 61, 72, 85, 116, 129.
lambdastartdef : 51, 61.
lambdastop : 51, 61, 72, 85, 116, 129.
lambdastopdef : 51, 61.
linestring : 132.
ll : 57, 61, 66, 67, 68, 116, 129.
lldef : 51, 61.
llmax : 89.
llmin : 89.
log : 67.
log10 : 83.
main : 45, 51.
malloc : 46, 112, 113.
maximum fractal level : 51, 68, 125.
maxintens : 60, 83, 87.
maxintens inellip : 60, 83, 87.
maxintens inintens : 60, 83, 87.
maxintens layer : 51, 83, 87.
maxintens trellip : 60, 83, 87.
maxintens trintens : 60, 83, 87.
mm : 56, 61, 72, 82, 85, 116, 129.
mmdef : 51, 61.
mme : 56, 61, 72, 74, 82, 83, 128, 129, 135, 136.
mmedef : 51, 61.
mmi : 56, 61, 72, 75, 82, 83, 127, 129, 135, 136.
mmidef : 51, 61.
mmtraject : 51, 63, 72, 134.
modf : 82.
modg1 : 51, 65, 126.
modnum : 57, 61, 65, 126.
modn1 : 51, 65, 126.
modpe1 : 51, 65, 126.
modpm1 : 51, 65, 126.
modqe1 : 51, 65, 126.
modqm1 : 51, 65, 126.
modt1 : 51, 65, 126.
n: 57.
NCHMAX: 47, 59.
ncrp : 51, 67, 124.
NDIV: 93.
nh : 112, 113, 114, 115.
nl : 112, 113, 114, 115.
nn : 57, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 76,

77, 78, 82, 83, 84, 85, 86, 116, 125, 129.
nndef : 51, 61.
nne : 51, 61, 84, 85, 121, 129.
no arg : 60, 116, 118, 119, 120, 121, 122, 123,

124, 125, 126, 127, 128.

144 INDEX MAGBRAGG §138

normalize ellipticity : 55, 61, 83, 116.
normalize intensity : 55, 61, 84, 116.
normalize internally : 55, 61, 116.
normalize length to micrometer : 55, 61, 84,

85, 86, 116.
now : 53, 73, 82.
nper : 51, 66, 67, 123, 124, 129.
nsurr : 51, 61, 70, 71, 83, 86, 116, 129.
nsurrdef : 51, 61.
NTAB: 93.
numeric : 88, 134.
n1 : 51, 65, 66, 67, 68, 89, 122, 123, 124, 125, 129.
n2 : 51, 65, 66, 67, 68, 89, 122, 123, 124, 125, 129.
odd layer : 55, 61, 68.
omega : 51, 72, 77, 80, 81, 83, 84.
optarg : 49.
outfilename : 59, 61, 83, 116, 117, 135.
outfilename s0 : 59, 117, 129, 135.
outfilename s1 : 59, 117, 129, 135.
outfilename s2 : 59, 117, 129, 135.
outfilename s3 : 59, 117, 129, 135.
outfilename v0 : 59, 117, 129, 135.
outfilename v1 : 59, 117, 129, 135.
outfilename v2 : 59, 117, 129, 135.
outfilename v3 : 59, 117, 129, 135.
outfilename w0 : 59, 117, 129, 135.
outfilename w1 : 59, 117, 129, 135.
outfilename w2 : 59, 117, 129, 135.
outfilename w3 : 59, 117, 129, 135.
pathcharacter : 91, 92.
pe : 29, 57, 62, 63, 65, 66, 67, 68, 79, 86.
pecrp : 51, 67, 124.
peper : 51, 66, 67, 123, 124.
perturbed gyration constant : 55, 61, 64, 69, 120.
pe1 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
pe2 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
phasejump : 55, 61, 66, 67, 119.
phasejumpangle : 51, 61, 66, 67, 119.
phasejumpposition : 51, 61, 66, 67, 119.
phi : 51, 61, 66, 67.
pi : 52, 66, 67.
pm : 29, 57, 62, 63, 65, 66, 67, 68, 79, 86.
pmcrp : 51, 67, 124.
pmper : 51, 66, 67, 123, 124.
pm1 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
pm2 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
progname : 49, 64, 65, 66, 67, 68, 84, 85, 86, 87,

89, 90, 116, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 131, 132, 133, 134, 135.

qe : 29, 57, 62, 63, 65, 66, 67, 68, 79, 86.
qecrp : 51, 67, 124.
qeper : 51, 66, 67, 123, 124.

qe1 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
qe2 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
qm : 29, 57, 62, 63, 65, 66, 67, 68, 79, 86.
qmcrp : 51, 67, 124.
qmper : 51, 66, 67, 123, 124.
qm1 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
qm2 : 51, 65, 66, 67, 68, 122, 123, 124, 125.
r: 48, 105, 107.
randomdistribution : 55, 61, 65, 116.
ranseed : 51, 61, 65.
ran1 : 65, 93.
rcmul : 77, 81, 103.
re : 95.
rhom : 57, 62, 63, 71, 77, 81.
rhop : 57, 62, 63, 71, 77, 81.
rhopm : 57, 62, 63, 71, 81.
rhopp : 57, 62, 63, 71, 81.
RNMX: 93.
save dbspectra : 55, 61, 83, 116.
saveintensityinfologfile : 55, 61, 87, 116.
scale stokesparams : 55, 61, 83, 116.
secondstring : 131.
SEEK_SET: 134, 135.
showsomehelp : 64, 116, 133.
sin : 66, 67, 109, 110.
somevariable : 51.
spectrumfilename : 59, 61, 116, 135.
sprintf : 116, 117, 121.
sqrt : 76, 97, 107.
sscanf : 116, 118, 119, 120, 121, 122, 123, 124,

125, 126, 127, 128.
status : 60, 82.
stderr : 64, 65, 66, 67, 84, 85, 86, 87, 89, 105, 106,

112, 113, 116, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 131, 132, 133, 134, 135.

stdout : 65, 68, 73, 82, 84, 85, 87, 116, 129, 134.
stn : 60, 82.
stoke scalefactor : 51, 55, 61, 83, 116.
stokes parameter spectrum : 55, 61, 83, 116.
strcmp : 46, 64, 65, 85, 116, 121, 122, 123, 124,

125, 126, 129, 135, 136.
strcpy : 46, 61, 116, 121, 122, 123, 124, 125.
strip away path : 26, 90, 92, 116.
strlen : 131, 132.
SUCCESS: 45, 47.
s0 : 60, 83, 84.
s1 : 60, 83, 84.
s2 : 60, 83, 84.
s3 : 60, 83, 84.
taum : 57, 62, 63, 71, 77, 81.
taup : 57, 62, 63, 71, 77, 81.
taupm : 57, 62, 63, 71, 81.

§138 MAGBRAGG INDEX 145

taupp : 57, 62, 63, 71, 81.
temp : 93.
time : 53, 73, 82.
tmp : 60, 65, 66, 67, 68, 69, 79, 83, 97, 98, 109, 134.
tmpbm : 60, 80, 81, 84.
tmpbp : 60, 80, 81, 84.
tmpch : 60, 134.
tmpfm : 60, 80, 81, 84.
tmpfp : 60, 80, 81, 84.
trmellipstart : 51, 74, 128.
trmellipstop : 51, 74, 128.
trmellipticity : 51, 72, 74, 76.
trmintensity : 51, 72, 75, 76.
trmintenstart : 51, 75, 127.
trmintenstop : 51, 75, 127.
trmtraject filename : 59, 116, 129, 134.
trmtraject specified : 55, 61, 63, 72, 74, 75,

116, 129, 134.
twopi : 52, 66, 67, 72.
t1 : 51, 65, 66, 67, 68, 122, 125.
t2 : 51, 65, 68, 122, 125.
ungetc : 134.
v: 112, 113, 114, 115.
verbose : 55, 61, 65, 68, 72, 78, 84, 85, 116,

129, 134.
VERSION: 47, 116.
v0 : 60, 83.
v1 : 60, 83.
v2 : 60, 83.
v3 : 60, 83.
w: 107.
writegratingtofile : 55, 61, 86, 116.
w0 : 60, 83.
w0traj : 51, 63, 74, 75, 134.
w1 : 60, 83.
w2 : 60, 83.
w3 : 60, 83.
w3traj : 51, 63, 74, 134.
x: 97, 98, 107.
y: 97, 98, 107.
z: 57, 89, 96, 97, 98, 107.
zt : 60, 84.

146 NAMES OF THE SECTIONS MAGBRAGG

〈Absolute value of complex number 97 〉 Used in section 94.

〈Add perturbation of gyration constant along grating structure 69 〉 Used in section 64.

〈Allocate optical field vectors 62 〉 Used in section 45.

〈Allocation of complex-valued vectors 113 〉 Used in section 111.

〈Allocation of real-valued vectors 112 〉 Used in section 111.

〈Calculate incident optical field spectrum 72 〉 Used in section 45.

〈Calculate intragrating layer reflectances 71 〉 Used in section 45.

〈Calculate nonlinear propagation constants of layer 79 〉 Used in section 78.

〈Calculate optical field in last layer of the grating 77 〉 Used in section 75.

〈Check for specified trajectory of transmitted Stokes parameters 134 〉 Used in section 45.

〈Close output files 136 〉 Used in section 45.

〈Complex addition 99 〉 Used in section 94.

〈Complex conjugation 96 〉 Used in section 94.

〈Complex division 104 〉 Used in section 94.

〈Complex exponentiation 108 〉 Used in section 94.

〈Complex multiplication 101 〉 Used in section 94.

〈Complex number 95 〉 Used in section 94.

〈Complex square root 107 〉 Used in section 94.

〈Complex subtraction 100 〉 Used in section 94.

〈Create outfile suffixes 117 〉 Used in section 116.

〈Data structure definitions 48 〉 Used in section 45.

〈Deallocate optical field vectors 63 〉 Used in section 45.

〈Deallocation of complex-valued vectors 115 〉 Used in section 111.

〈Deallocation of real-valued vectors 114 〉 Used in section 111.

〈Declaration of Boolean variables for execution control 55 〉 Used in section 51.

〈Declaration of complex arrays storing the electrical field distribution 54 〉 Used in section 51.

〈Declaration of file pointers 58 〉 Used in section 51.

〈Declaration of local dummy variables 60 〉 Used in section 51.

〈Declaration of local variables 51 〉 Used in section 45.

〈Declaration of strings and file names 59 〉 Used in section 51.

〈Discretization parameters 56 〉 Used in section 51.

〈Display elapsed execution time 73 〉 Used in section 72.

〈Display full help line 132 〉 Used in section 130.

〈Display help message 133 〉 Used in section 130.

〈Display parameters parsed from the command line 129 〉 Used in section 116.

〈Display simulation status and estimated time of arrival 82 〉 Used in section 78.

〈Display split help line 131 〉 Used in section 130.

〈Division by complex and real number 106 〉 Used in section 104.

〈Division by complex numbers 105 〉 Used in section 104.

〈Exponentiation by complex number 109 〉 Used in section 108.

〈Exponentiation by imaginary number 110 〉 Used in section 108.

〈Global definitions 47 〉 Used in section 45.

〈Global variables 49 〉 Used in section 45.

〈Grating parameters 57 〉 Used in section 51.

〈 Initialize variables 61 〉 Used in section 45.

〈 Initiate binary grating structure 65 〉 Used in section 64.

〈 Initiate chirped grating structure 67 〉 Used in section 64.

〈 Initiate fractal grating structure 68 〉 Used in section 64.

〈 Initiate grating structure 64 〉 Used in section 45.

〈 Initiate sinusoidal grating structure 66 〉 Used in section 64.

〈 Initiate surrounding medium 70 〉 Used in section 45.

〈Library inclusions 46 〉 Used in section 45.

MAGBRAGG NAMES OF THE SECTIONS 147

〈Multiplication by real and complex numbers 103 〉 Used in section 101.

〈Multiplication by two complex numbers 102 〉 Used in section 101.

〈Open files for output 135 〉 Used in section 45.

〈Parse apodization options 118 〉 Used in section 116.

〈Parse command line for parameter values 116 〉 Used in section 45.

〈Parse field evolution saving options 121 〉 Used in section 116.

〈Parse for chirped grating options 124 〉 Used in section 116.

〈Parse for fractal grating options 125 〉 Used in section 116.

〈Parse for options for modified layer of grating structure 126 〉 Used in section 116.

〈Parse for sinusoidal grating options 123 〉 Used in section 116.

〈Parse for stepwise grating options 122 〉 Used in section 116.

〈Parse gyration constant perturbation options 120 〉 Used in section 116.

〈Parse phase jump options 119 〉 Used in section 116.

〈Parse the command line for transmitted ellipticity range 128 〉 Used in section 116.

〈Parse the command line for transmitted intensity range 127 〉 Used in section 116.

〈Physical and mathematical constants 52 〉 Used in section 51.

〈Print information on maximum optical intensity in grating 87 〉 Used in section 45.

〈Propagate fields over homogeneous layer 80 〉 Used in section 78.

〈Propagate fields over interface to next layer 81 〉 Used in section 78.

〈Propagate optical fields from last to first layer of the grating 78 〉 Used in section 75.

〈Routine for checking for numerical characters 88 〉 Used in section 50.

〈Routine for checking valid path characters 91 〉 Used in section 90.

〈Routine for initialization of Cantor type fractal gratings 89 〉 Used in section 50.

〈Routine for stripping away path string 92 〉 Used in section 90.

〈Routines for complex arithmetics 94 〉 Used in section 50.

〈Routines for displaying help message 130 〉 Used in section 50.

〈Routines for generation of random numbers 93 〉 Used in section 50.

〈Routines for memory allocation of vectors 111 〉 Used in section 50.

〈Routines for removing preceding path of filenames 90 〉 Used in section 50.

〈Scan transmitted optical field in ellipticity and intensity 74 〉 Used in section 72.

〈Scan transmitted optical field in intensity 75 〉 Used in section 74.

〈Set boundary conditions at end of grating 76 〉 Used in section 75.

〈Squared absolute value of complex number 98 〉 Used in section 94.

〈Subroutines 50 〉 Used in section 45.

〈Time variables 53 〉 Used in section 51.

〈Write Stokes parameters and reflection coefficients to file 83 〉 Used in section 75.

〈Write intragrating field evolution to file 84 〉 Used in section 75.

〈Write intragrating intensity evolution to file 85 〉 Used in section 75.

〈Write spatial grating structure to file 86 〉 Used in section 75.

MAGBRAGG

Section Page
Introduction . 1 1
The CWEB programming language . 2 2
Theory of nonlinear magneto-optical Bragg gratings . 3 3
The algorithm of computation . 10 9
The Butcher and Cotter convention . 11 11
Rigorous theory of wave propagation in isotropic media . 14 13
Revision history of the program . 26 25
Compiling the source code . 27 34
Running the program . 28 36
Specifying grating types . 29 37
Postprocessing of the data to get the direct relation . 44 44
The main program . 45 45
Declaration of local variables of the main program . 51 47
Initialization of variables . 61 53
Memory allocation . 62 55
Initialization of the grating structure . 64 58
Calculation of intra-grating layer reflectances . 71 68
Calculating the electrical field distribution inside the grating . 72 69
Routine for checking for numerical characters . 88 90
Routine for initialization of Cantor type fractal gratings . 89 91
Routines for removing preceding path of filenames . 90 92
Routines for generation of random numbers . 93 93
Routines for doing complex arithmetics . 94 94
Subroutines for memory allocation . 111 102
Parsing command line options . 116 104
Check for specified trajectory of transmitted Stokes parameters . 134 135
Opening and closing files for data output . 135 136
References . 137 141
Index . 138 142

