
§1 WIENER INTRODUCTION 1

December 16, 2011 at 21:32

1. Introduction.

Wiener

A computer program for the generation of numerical data simulating a Wiener process.

(Version 1.0 of November 11, 2011)

Written by Fredrik Jonsson

0 20 40 60 80 100

−20

0

20

40

60

x

y

This CWEB† computer program computes a series of floating-point numbers corresponding to a Wiener
process in D dimensions. It relies on the random number generator as proposed by Donald Knuth in The

Art of Computer Programming, Volume 1 – Fundamental Algorithms, 3rd edition (Addison-Wesley, Boston,
1998), generating numbers which are fed into the Box–Muller transform to generate the normal distribution
associated with the Wiener process. Besides providing a simulator of the Wiener process, the WIENER

program can also be used in a “lock-in” mode with zero expectation value for each data point, providing a
pretty good random number generator for large series of stochastic data, not relying on the (rather poor)
generators available in standard C libraries.
The WIENER program does not solve any problem per se, but is merely to be considered as a generator of

statistical data to be used by other applications in modeling of physical, chemical or financial processes.

Copyright c© Fredrik Jonsson, 2011. All rights reserved. Non-commercial copying welcome.

† For information on the CWEB programming language by Donald E. Knuth, as well as samples of CWEB

programs, see http://www-cs-faculty.stanford.edu/~knuth/cweb.html. For general information on
literate programming, see http://www.literateprogramming.com.

2 THE WIENER PROCESS WIENER §2

2. The Wiener process. “In mathematics, the Wiener process is a continuous-time stochastic process
named in honor of Norbert Wiener. It is often called standard Brownian motion, after Robert Brown. It is
one of the best known Lévy processes (càdlàg stochastic processes with stationary independent increments)
and occurs frequently in pure and applied mathematics, economics and physics.
The Wiener process plays an important role both in pure and applied mathematics. In pure mathematics,

the Wiener process gave rise to the study of continuous time martingales. It is a key process in terms of which
more complicated stochastic processes can be described. As such, it plays a vital role in stochastic calculus,
diffusion processes and even potential theory. It is the driving process of Schramm–Loewner evolution. In
applied mathematics, the Wiener process is used to represent the integral of a Gaussian white noise process,
and so is useful as a model of noise in electronics engineering, instrument errors in filtering theory and
unknown forces in control theory.
The Wiener process has applications throughout the mathematical sciences. In physics it is used to study

Brownian motion, the diffusion of minute particles suspended in fluid, and other types of diffusion via the
Fokker–Planck and Langevin equations. It also forms the basis for the rigorous path integral formulation of
quantum mechanics (by the Feynman–Kac formula, a solution to the Schrödinger equation can be represented
in terms of the Wiener process) and the study of eternal inflation in physical cosmology. It is also prominent
in the mathematical theory of finance, in particular the Black–Scholes option pricing model.”

–Wikipedia, “Wiener process” (2011)

3. What the WIENER program does (and doesn’t). The present CWEB program does not solve any problems
related to any of the processes described by models involving the Wiener process, but is merely an attempt to
produce an as-good-as-possible result when simulating the Wiener process as such. In the WIENER program,
special attention has been paid to the generation of random numbers, as this is a crucial and rather tricky
problem when it comes to generating large non-recurring series of data. In the present program, the random
number generator proposed by Donald Knuth† has been employed, generating uniformly distributed numbers
which are fed into the Box–Muller transform to generate the normal distribution associated with the Wiener
process.
Apart from being a pretty good and reliable generator of statistical data, to be used by other applications

in modeling of physical, chemical or financial processes, the WIENER program does not solve any problems
per se.

† Donald E. Knuth, The Art of Computer Programming, Volume 1 – Fundamental Algorithms, 3rd edition
(Addison-Wesley, Boston, 1998).

§4 WIENER THE WIENER PROCESS 3

4. The CWEB programming language. For the reader who might not be familiar with the concept of the
CWEB programming language, the following citations hopefully will be useful. For further information, as
well as freeware compilers for compiling CWEB source code, see http://www.literateprogramming.com.

I believe that the time is ripe for significantly better documentation of programs, and that we can

best achieve this by considering programs to be works of literature. Hence, my title: ‘Literate

Programming.’

Let us change our traditional attitude to the construction of programs: Instead of imagining

that our main task is to instruct a computer what to do, let us concentrate rather on explaining

to human beings what we want a computer to do.

The practitioner of literate programming can be regarded as an essayist, whose main concern

is with exposition and excellence of style. Such an author, with thesaurus in hand, chooses

the names of variables carefully and explains what each variable means. He or she strives for a

program that is comprehensible because its concepts have been introduced in an order that is

best for human understanding, using a mixture of formal and informal methods that reinforce

each other.

–Donald Knuth, The CWEB System of Structured Documentation (Addison-Wesley, Massachusetts, 1994)

The philosophy behind CWEB is that an experienced system programmer, who wants to provide

the best possible documentation of his or her software products, needs two things simultaneously:

a language like TEX for formatting, and a language like C for programming. Neither type

of language can provide the best documentation by itself; but when both are appropriately

combined, we obtain a system that is much more useful than either language separately.

The structure of a software program may be thought of as a ‘WEB’ that is made up of many

interconnected pieces. To document such a program we want to explain each individual part of

the web and how it relates to its neighbors. The typographic tools provided by TEX give us an

opportunity to explain the local structure of each part by making that structure visible, and the

programming tools provided by languages like C make it possible for us to specify the algorithms

formally and unambiguously. By combining the two, we can develop a style of programming

that maximizes our ability to perceive the structure of a complex piece of software, and at the

same time the documented programs can be mechanically translated into a working software

system that matches the documentation.

Besides providing a documentation tool, CWEB enhances the C language by providing the

ability to permute pieces of the program text, so that a large system can be understood entirely

in terms of small sections and their local interrelationships. The CTANGLE program is so

named because it takes a given web and moves the sections from their web structure into the

order required by C; the advantage of programming in CWEB is that the algorithms can be

expressed in “untangled” form, with each section explained separately. The CWEAVE program

is so named because it takes a given web and intertwines the TEX and C portions contained in

each section, then it knits the whole fabric into a structured document.

–Donald Knuth, “Literate Programming”, in Literate Programming (CSLI Lecture Notes, Stanford, 1992)

5. Revision history of the program.

2011-11-11 [v.1.0] <http://jonsson.eu/programs/cweb/>
First properly working version of the WIENER program, written in CWEB and (ANSI-
conformant) C.

4 COMPILING THE SOURCE CODE WIENER §6

6. Compiling the source code. The program is written in CWEB, generating ANSI C (ISO C90)
conforming source code and documentation as plain TEX-source, and is to be compiled using the sequences
as outlined in the Makefile listed below.

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.

#

Copyright (C) 2002-2011, Fredrik Jonsson <http://jonsson.eu>

#

The CTANGLE program converts a CWEB source document into a C program

which may be compiled in the usual way. The output file includes #line

specifications so that debugging can be done in terms of the CWEB source

file.

#

The CWEAVE program converts the same CWEB file into a TeX file that may

be formatted and printed in the usual way. It takes appropriate care of

typographic details like page layout and the use of indentation, italics,

boldface, etc., and it supplies extensive cross-index information that it

gathers automatically.

#

CWEB allows you to prepare a single document containing all the informa-

tion that is needed both to produce a compilable C program and to produce

a well-formatted document describing the program in as much detail as the

writer may desire. The user of CWEB ought to be familiar with TeX as well

as C.

#

PROJECT = wiener

FIGURES = fig1.eps fig2.eps fig3.eps

CTANGLE = ctangle

CWEAVE = cweave

CC = gcc

CCOPTS = -O2 -Wall -ansi -std=iso9899:1990 -pedantic

LNOPTS = -lm

TEX = tex

DVIPS = dvips

DVIPSOPT = -ta4 -D1200

PS2PDF = ps2pdf

METAPOST = mpost

all: $(PROJECT) $(FIGURES) $(PROJECT).pdf

$(PROJECT): $(PROJECT).o

$(CC) $(CCOPTS) -o $(PROJECT) $(PROJECT).o $(LNOPTS)

$(PROJECT).o: $(PROJECT).c

$(CC) $(CCOPTS) -c $(PROJECT).c

$(PROJECT).c: $(PROJECT).w

$(CTANGLE) $(PROJECT)

§6 WIENER COMPILING THE SOURCE CODE 5

$(PROJECT).pdf: $(PROJECT).ps

$(PS2PDF) $(PROJECT).ps $(PROJECT).pdf

$(PROJECT).ps: $(PROJECT).dvi

$(DVIPS) $(DVIPSOPT) $(PROJECT).dvi -o $(PROJECT).ps

$(PROJECT).dvi: $(PROJECT).tex

$(TEX) $(PROJECT).tex

$(PROJECT).tex: $(PROJECT).w

$(CWEAVE) $(PROJECT)

#

Generate the Encapsulated PostScript image fig1.eps for the documentation.

This is a 2D scatter plot of the uniformly distributed pseudo-random numbers

prior to having been fed into the Box-Muller transform.

#

fig1.eps: Makefile $(PROJECT).w

wiener --uniform -D 2 -M 10000 > fig1.dat;

cho "input graph;\

def mpdot = btex\

\vrule height 0.5pt width 1.0pt depth 0.5pt\

etex enddef;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(0,0,1,1);\

pickup pencircle scaled .5pt;\

gdraw \"fig1.dat\" plot mpdot;\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig1.mp

$(METAPOST) fig1.mp

$(TEX) -jobname=fig1 "\input epsf\nopagenumbers\

\centerline\epsfboxfig1.1\bye"

$(DVIPS) -D1200 -E fig1.dvi -o fig1.eps

#

Generate the Encapsulated PostScript image fig2.eps for the documentation.

This is a 2D scatter plot of the normally distributed pseudo-random numbers

resulting from the Box-Muller transform.

#

6 COMPILING THE SOURCE CODE WIENER §6

fig2.eps: Makefile $(PROJECT).w

wiener --normal -D 2 -M 10000 > fig2.dat;

cho "input graph;\

def mpdot = btex\

\vrule height 0.5pt width 1.0pt depth 0.5pt\

etex enddef;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(whatever,whatever,whatever,whatever);\

pickup pencircle scaled .5pt;\

gdraw \"fig2.dat\" plot mpdot;\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig2.mp

$(METAPOST) fig2.mp

$(TEX) -jobname=fig2 "\input epsf\nopagenumbers\

\centerline\epsfboxfig2.1\bye"

$(DVIPS) -D1200 -E fig2.dvi -o fig2.eps

#

Generate the Encapsulated PostScript image fig3.eps for the documentation.

This is a 2D graph showing the resulting simulated Wiener process.

#

fig3.eps: Makefile $(PROJECT).w

wiener -D 2 -M 10000 > fig3.dat;

cho "input graph;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(whatever,whatever,whatever,whatever);\

pickup pencircle scaled .5pt;\

gdraw \"fig3.dat\";\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig3.mp

$(METAPOST) fig3.mp

$(TEX) -jobname=fig3 "\input epsf\nopagenumbers\

\centerline\epsfboxfig3.1\bye"

$(DVIPS) -D1200 -E fig3.dvi -o fig3.eps

clean:

-rm -Rf $(PROJECT) * *.c *.o *.exe *.dat *.pdf *.mp *.trj *.mpx

-rm -Rf *.tex *.aux *.log *.toc *.idx *.scn *.dvi *.ps *.1 *.eps

archive:

make -ik clean

tar --gzip --directory=../ -cf ../$(PROJECT).tgz $(PROJECT)

§6 WIENER COMPILING THE SOURCE CODE 7

This Makefile essentially executes two major calls. First, the CTANGLE program parses the CWEB source
document wiener.w to extract a C source file wiener.c which may be compiled in the usual way using any
ANSI C conformant compiler. The output source file includes #line specifications so that any debugging can
be done conveniently in terms of the original CWEB source file. Second, the CWEAVE program parses the
same CWEB source file to extract a plain TEX source file wiener.tex which may be compiled in the usual
way. It takes appropriate care of typographic details like page layout and the use of indentation, italics,
boldface, and so on, and it supplies extensive cross-index information that it gathers automatically.
After having executed make in the same catalogue where the files wiener.w and Makefile are located,

one is left with an executable file wiener, being the ready-to-use compiled program, and a PostScript file
wiener.ps which contains the full documentation of the program, that is to say the document you currently
are reading. On platforms running any operating system by Microsoft, the executable file will instead
automatically be called wiener.exe. This convention also applies to programs compiled under the UNIX-like
environment CYGWIN.

8 RUNNING THE PROGRAM WIENER §7

7. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program. The syntax for executing the program is

wiener [options]

where options include the following, given in their long (‘--’) as well as their short (‘-’) forms:

--help, -h
Display a brief help message and exit clean.

--verbose, -v
Toggle verbose mode. Default: off.

--num samples, -M M
Generate M samples of data. Here M should always be an even number, greater than the
long lag KK. If an odd number is specified, the program will automatically adjust this to
the next higher integer. Default: M = KK = 100.

--dimension, -D D
Specifies the dimension D of the Wiener process, that is to say generating a set of D
numbers for each of the M data points in the seqence. Default: D = 1.

--seed, -s S
Define a custom seed number S for the initialization of the random number generator.
Default: S = DEFAULT_SEED = 310952.

--uniform, -u
Instead of generating a sequence of data corresponding to a Wiener process, lock the
program to simply generate a uniform distribution of D-dimensional points, with each
element distributed over the interval [0, 1].

--normal, -n
Instead of generating a sequence of data corresponding to a Wiener process, lock the
program to simply generate a normal distribution of D-dimensional points, with each
element distributed with zero expectation value and unit variance.

One may look upon the two last options as verification options, generating data suitable for spectral tests
on the quality of the generator of pseudo-random numbers.

8. Plotting the results using GNUPLOT. The data sets generated by WIENER may be displayed and saved as
Encapsulated PostScript images using, say, GNUPLOT or METAPOST. While I personally prefer MetaPost,
mainly due to the possibility of incorporating the same typygraphic elements as in TEX, many people consider
GNUPLOT to be easier in operation.
In order to save a scatter graph as Encapsulated PostScript using GNUPLOT, you may include the following

calls in, say, a Makefile or a shell script:

wiener -D 2 -M 10000 > figure.dat;

echo "set term postscript eps;\

set output ”figure.eps”;\

set size square;\

set nolabel;\

plot ”figure.dat” with dots notitle;\

quit" | gnuplot

§9 WIENER RUNNING THE PROGRAM 9

9. Plotting the results using METAPOST. Another choice is to go for the METAPOST way. This is
illustrated with the following blocks, taken directly from the enclosed Makefile and generating the figures
which can be seen in the section relating to the generation of normally distributed variables (routine
normdist):

PROJECT = wiener

TEX = tex

DVIPS = dvips

METAPOST = mpost

#

Generate the Encapsulated PostScript image fig1.eps for the documentation.

This is a 2D scatter plot of the uniformly distributed pseudo-random numbers

prior to having been fed into the Box-Muller transform.

#

fig1.eps: Makefile $(PROJECT).w

wiener --uniform -D 2 -M 10000 > fig1.dat;

cho "input graph;\

def mpdot = btex\

\vrule height 0.5pt width 1.0pt depth 0.5pt\

etex enddef;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(0,0,1,1);\

pickup pencircle scaled .5pt;\

gdraw \"fig1.dat\" plot mpdot;\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig1.mp

$(METAPOST) fig1.mp

$(TEX) -jobname=fig1 "\input epsf\nopagenumbers\

\centerline\epsfboxfig1.1\bye"

$(DVIPS) -D1200 -E fig1.dvi -o fig1.eps

#

Generate the Encapsulated PostScript image fig2.eps for the documentation.

This is a 2D scatter plot of the normally distributed pseudo-random numbers

resulting from the Box-Muller transform.

#

10 RUNNING THE PROGRAM WIENER §9

fig2.eps: Makefile $(PROJECT).w

wiener --normal -D 2 -M 10000 > fig2.dat;

cho "input graph;\

def mpdot = btex\

\vrule height 0.5pt width 1.0pt depth 0.5pt\

etex enddef;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(whatever,whatever,whatever,whatever);\

pickup pencircle scaled .5pt;\

gdraw \"fig2.dat\" plot mpdot;\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig2.mp

$(METAPOST) fig2.mp

$(TEX) -jobname=fig2 "\input epsf\nopagenumbers\

\centerline\epsfboxfig2.1\bye"

$(DVIPS) -D1200 -E fig2.dvi -o fig2.eps

#

Generate the Encapsulated PostScript image fig3.eps for the documentation.

This is a 2D graph showing the resulting simulated Wiener process.

#

fig3.eps: Makefile $(PROJECT).w

wiener -D 2 -M 10000 > fig3.dat;

cho "input graph;\

beginfig(1);\

draw begingraph(86mm,86mm);\

setrange(whatever,whatever,whatever,whatever);\

pickup pencircle scaled .5pt;\

gdraw \"fig3.dat\";\

pickup pencircle scaled .25pt;\

autogrid(itick bot,itick lft);\

glabel.bot(btex $$ x$$ etex,OUT);\

glabel.lft(btex $$ y$$ etex,OUT);\

endgraph; endfig; end" > fig3.mp

$(METAPOST) fig3.mp

$(TEX) -jobname=fig3 "\input epsf\nopagenumbers\

\centerline\epsfboxfig3.1\bye"

$(DVIPS) -D1200 -E fig3.dvi -o fig3.eps

§10 WIENER THE MAIN PROGRAM 11

10. The main program. Here follows the general outline of the main program.

〈Library inclusions 11 〉
〈Global definitions 12 〉
〈Global variables 13 〉
〈Routines 14 〉

int main (int argc , char ∗argv [])
{
〈Declaration of local variables 24 〉
〈Parse command line for parameters 25 〉
〈Allocate memory for a vector containing M ×D elements 26 〉
〈Fill vector with M number of D:tuples describing the Wiener process 27 〉
〈Print the generated vector at standard terminal output 28 〉
〈Deallocate the memory occupied by the vector of M ×D elements 29 〉
return (SUCCESS);

}

11. Library dependencies. The standard ANSI C libraries included in this program are:

math.h For access to common mathematical functions.

stdio.h For file access and any block involving fprintf .

stdlib.h For access to the exit function.

string.h For string manipulation, strcpy , strcmp etc.

ctype.h For access to the isalnum function.

〈Library inclusions 11 〉 ≡
#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

This code is used in section 10.

12 THE MAIN PROGRAM WIENER §12

12. Global definitions. These are the global definitions present in the WIENER program:

VERSION The current program revision number.

COPYRIGHT The copyright banner.

SUCCESS The return code for successful program termination.

FAILURE The return code for unsuccessful program termination.

QUALITY The recommended “quality level” for high-resolution use, according to Knuth.
Used by the ranf array routine.

KK The “long lag” used by routines ranf array and ranf start .

LL The “short lag” used by routines ranf array and ranf start .

DEFAULT_SEED The default seed to use when initializing the random number generator, using the
routine ranf start . The seed can be hand-picked using the --seed command-line
option.

cmd match(s,l,c) Check if the string s and/or l matches the string c. This short-hand macro is
used when parsing the command line for options.

〈Global definitions 12 〉 ≡
#define VERSION "1.0"

#define COPYRIGHT "Copyright (C) 2011, Fredrik Jonsson <http://jonsson.eu>"

#define SUCCESS (0)
#define FAILURE (1)
#define QUALITY (1009)
#define KK (100)
#define LL (37)
#define DEFAULT_SEED (310952)
#define cmd match (s, l, c) ((¬strcmp((c), (s))) ∨ (¬strcmp((c), (l))))
#define MODE_WIENER_PROCESS (0)
#define MODE_LOCKED_UNIFORM_DISTRIBUTION (1)
#define MODE_LOCKED_NORMAL_DISTRIBUTION (2)

This code is used in section 10.

13. Declaration of global variables. Usually, the only global variables allowed in my programs are optarg ,
which is a pointer to the the string of characters that specified the call from the command line, and
progname , which simply is a pointer to the string containing the name of the program, as it was invoked
from the command line. However, as Donald Knuth has a faiblesse for global variables, I have for the sake of
consistency with the routines related to the random number generator kept his definitions in a global scope.

〈Global variables 13 〉 ≡
extern char ∗optarg ;
char ∗progname ;
double ranf arr buf [QUALITY];
double ranf arr dummy = −1.0, ranf arr started = −1.0;
double ∗ranf arr ptr = &ranf arr dummy ; /∗ the next random fraction, or -1 ∗/

This code is used in section 10.

§14 WIENER DECLARATION OF ROUTINES 13

14. Declaration of routines. These routines exclusively concern the generation of random numbers
and the generation of normally distributed data points in the Wiener process.

〈Routines 14 〉 ≡
〈Routine for generation of uniformly distributed random numbers 15 〉
〈Routine for initialization of the random number generator 16 〉
〈Routine for generation of normally distributed variables 17 〉
〈Routine for generation of numerical data describing a Wiener process 18 〉
〈Routine for memory allocation 19 〉
〈Routine for memory de-allocation 20 〉
〈Routine for displaying a help message at terminal output 21 〉
〈Routine for checking valid path characters 22 〉
〈Routine for stripping away path string 23 〉

This code is used in section 10.

14 DECLARATION OF ROUTINES WIENER §15

15. Generation of uniformly distributed random numbers. We here avoid relying on the standard functions
available in C,† but rather take resort to the algorithm devised by Donald Knuth in The Art of Computer

Programming, Volume 1 – Fundamental Algorithms, 3rd edition, Section 3.6. (Addison–Wesley, Boston,
1998).‡ The variables to the routine are as follows:

double aa[] On return, this array contains n new random numbers, following the recurrence
Xj = (Xj−100 −Xj−37)mod 230. Not used on input.

double n The number n of random numbers to be generated. This array length must be
at least KK elements.

The mod sum (x, y) macro is here merely a shorthand for “(x+ y)mod 1.0.”

〈Routine for generation of uniformly distributed random numbers 15 〉 ≡
#define mod sum (x, y) (((x) + (y))− (int)((x) + (y)))
double ran u [KK]; /∗ the generator state ∗/

void ranf array (double aa [], int n) /∗ put n new random fractions in aa ∗/
{
register int i, j;

for (j = 0; j < KK; j++) aa [j] = ran u [j];
for (; j < n; j++) aa [j] = mod sum (aa [j − KK], aa [j − LL]);
for (i = 0; i < LL; i++, j++) ran u [i] = mod sum (aa [j − KK], aa [j − LL]);
for (; i < KK; i++, j++) ran u [i] = mod sum (aa [j − KK], ran u [i− LL]);

}

void ranf matrix (double ∗∗aa , int mm , int dd)
{
register int i, j, col ;

for (col = 0; col < dd ; col ++) {
for (j = 0; j < KK; j++) aa [j][col] = ran u [j];
for (; j < mm ; j++) aa [j][col] = mod sum (aa [j − KK][col], aa [j − LL][col]);
for (i = 0; i < LL; i++, j++) ran u [i] = mod sum (aa [j − KK][col], aa [j − LL][col]);
for (; i < KK; i++, j++) ran u [i] = mod sum (aa [j − KK][col], ran u [i− LL]);

}
}

This code is used in section 14.

† Here only included as a reference, the (primitive) standard C way of generating random integer numbers,
in this case initializing with a simple srand(time(NULL)) and generating random numbers between 0 and
RAND_MAX, is
int rand stdc()

srand(time(NULL)); /* Initialize random number generator */

return(rand());

I have personally not (yet) checked this approach using the spectral tests recommended by Knuth.
‡ The credit for this random number generator, which employs double floating-point precision rather than
the original integer version, goes entirely to Donald Knuth and the persons who contributed. The origi-
nal source code are available at http://www-cs-faculty.stanford.edu/~knuth/programs/rng-double.c.
The current routine takes into account changes as explained in the errata to the 2nd edition, see http://www-
cs-faculty.stanford.edu/~knuth/taocp.html in the changes to Volume 2 on pages 171 and following.

§16 WIENER DECLARATION OF ROUTINES 15

16. Initialization of the random number generator. To quote Knuth, “The tricky thing about using a
recurrence like [Xj = (Xj−100 −Xj−37)mod 230] is, of course, to get everuthing started properly in the first
place, by setting up suitable values of X0, . . . , X99. The following routine ran start initializes the generator
nicely when given any seed number between 0 and 230 − 3 = 1, 073, 741, 821 inclusive.” Here we rather
employ the double precision variant of the initialization to match the data type of ran array .
Again, the credits for the ranf start routine goes entirely to Donald Knuth and the persons who con-

tributed.

〈Routine for initialization of the random number generator 16 〉 ≡
#define TT 70 /∗ guaranteed separation between streams ∗/
#define is odd (s) ((s) & 1)
void ranf start (long seed)
{
register int t, s, j;
double u[KK + KK − 1];
double ulp = (1.0/(1L ≪ 30))/(1L ≪ 22); /∗ 2 to the -52 ∗/
double ss = 2.0 ∗ ulp ∗ ((seed & #3fffffff) + 2);

for (j = 0; j < KK; j++) {
u[j] = ss ; /∗ bootstrap the buffer ∗/
ss += ss ;
if (ss ≥ 1.0) ss −= 1.0− 2 ∗ ulp ; /∗ cyclic shift of 51 bits ∗/

}
u[1] += ulp ; /∗ make u[1] (and only u[1]) ”odd” ∗/
for (s = seed & #3fffffff, t = TT − 1; t;) {
for (j = KK − 1; j > 0; j−−) u[j + j] = u[j], u[j + j − 1] = 0.0; /∗ ”square” ∗/
for (j = KK + KK − 2; j ≥ KK; j−−) {
u[j − (KK − LL)] = mod sum (u[j − (KK − LL)], u[j]);
u[j − KK] = mod sum (u[j − KK], u[j]);

}
if (is odd (s)) { /∗ ”multiply by z” ∗/
for (j = KK; j > 0; j−−) u[j] = u[j − 1];
u[0] = u[KK]; /∗ shift the buffer cyclically ∗/
u[LL] = mod sum (u[LL], u[KK]);

}
if (s) s ≫= 1;
else t−−;

}
for (j = 0; j < LL; j++) ran u [j + KK − LL] = u[j];
for (; j < KK; j++) ran u [j − LL] = u[j];
for (j = 0; j < 10; j++) ranf array (u, KK + KK − 1); /∗ warm things up ∗/
ranf arr ptr = &ranf arr started ;

}
#define ranf arr next () (∗ranf arr ptr ≥ 0 ? ∗ranf arr ptr ++ : ranf arr cycle ())

double ranf arr cycle ()
{
if (ranf arr ptr ≡ &ranf arr dummy) ranf start (314159L); /∗ the user forgot to initialize ∗/
ranf array (ranf arr buf , QUALITY);
ranf arr buf [KK] = −1;
ranf arr ptr = ranf arr buf + 1;
return ranf arr buf [0];

}

This code is used in section 14.

16 DECLARATION OF ROUTINES WIENER §17

17. Generation of normally distributed variables. Accepting uniformly distributed random numbers as
input, the Box–Muller transform creates a set of normally distributed numbers. This transform originally
appeared in G. E. P. Box and Mervin E. Muller, A Note on the Generation of Random Normal Deviates,
Annals Math. Stat. 29, 610–611 (1958).
In Donald Knuth’s The Art of Computer Programming, Volume 1 – Fundamental Algorithms, 3rd edition

(Addison–Wesley, Boston, 1998), the Box–Muller method is denoted the polar method and is described in
detail in Section 3.4.1, Algorithm P, on page 122.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Figure 1. Sample two-dimensional output from the ranf matrix routine, in this case
10 000 data points uniformly distributed over the domain 0 ≤ {x, y} ≤ 1. The data for this
graph was generated by WIENER using wiener --uniform -D 2 -M 10000 > fig1.dat.
See the fig1.eps block in the enclosed Makefile for details on how METAPOST was used
in the generation of the encapsulated PostScript image of the graph.

§17 WIENER DECLARATION OF ROUTINES 17

−4 −2 0 2 4
−4

−2

0

2

4

x

y

Figure 2. The same data points as in Fig. 1, but after having applied the Box–Muller
transform to yield a normal distribution of pseudo-random numbers. The data for this
graph was generated by WIENER using wiener --normal -D 2 -M 10000 > fig2.dat.
See the fig2.eps block in the enclosed Makefile for details on how METAPOST was used
in the generation of the encapsulated PostScript image of the graph.

〈Routine for generation of normally distributed variables 17 〉 ≡
#define PI (3.14159265358979323846264338)
void normdist (double ∗∗aa , int mm , int dd)
{
register int j, k;
register double f, z;

for (j = 0; j < dd ; j++) {
for (k = 0; k < mm − 1; k += 2) {
if (aa [k][j] > 0.0) {
f = sqrt (−2 ∗ log (aa [k][j]));
z = 2.0 ∗ PI ∗ aa [k + 1][j];
aa [k][j] = f ∗ cos (z);
aa [k + 1][j] = f ∗ sin (z);

}
else {
fprintf (stderr , "%s: Error: Zero element detected!\n", progname);
fprintf (stderr , "%s: (row %d, column %d)\n", progname , k, j);

}
}

}
return;

}
#undef PI

This code is used in section 14.

18 DECLARATION OF ROUTINES WIENER §18

18. Routine for generation of numerical data describing a Wiener process. This is the core routine of
the WIENER program. After having initialized the random number generator with the supplied seed value
(calling ranf start (seed)), the generation of a sequence of numbers describing a Wiener process starts with
the generation of M×D random and uniformly distributed floating-point numbers (M×D/2 pairs, assuming
M×D to be an even number), from which M×D normally distributed floating-point numbers are computed
using the Box–Muller transform†
The actual computation of the random numbers (at first corresponding to a uniform distribution in the

interval [0, 1]) is done by the routine ranf matrix (aa ,mm , dd), which fills an [M ×D] array.

0 20 40 60 80 100

−20

0

20

40

60

x

y

Figure 3. The same data points as in Fig. 2, but after having chained the normally
distributed points to form the simulated Wiener process. The data for this graph was
generated by WIENER using wiener -D 2 -M 10000 > fig3.dat. The trajectory starts
with data point 1 at (0, 0) and end up with data point 10 000 at approximately (89.9, 12.6)
See the fig3.eps block in the enclosed Makefile for details on how METAPOST was used
in the generation of the encapsulated PostScript image of the graph.

The variables interfacing the wiener routine are as follows:

aa [Output] The M × D matrix A, on return containing the M number of D-
dimensional data points for the generated Wiener process.

mm [Input] The M number of data points to generate. This equals to the number of
rows in the aa array, and must be at least KK elements.

dd [Input] The dimension of each generated data point.

seed [Input] The seed to use when initializing the random number generator, using
the routine ranf start .

† For example, see http://en.wikipedia.org/wiki/Box%E2%80%93Muller transform.

§18 WIENER DECLARATION OF ROUTINES 19

mode [Input] Determines if the sequence should be locked to simply generate a uni-
form distribution over the interval [0, 1] (MODE_LOCKED_UNIFORM_DISTRIBUTION)
or a normal (Gaussian) distribution with expectation value zero and unit vari-
ance (MODE_LOCKED_NORMAL_DISTRIBUTION). Otherwise, the series of data will
be generated to simulate a Wiener process, as is the main purpose of the WIENER

program. One may look upon the two first modes as verification options, gener-
ating data suitable for spectral tests on the quality of the generator of pseudo-
random numbers.

〈Routine for generation of numerical data describing a Wiener process 18 〉 ≡
void wiener (double ∗∗aa , int mm , int dd , int seed , short mode)
{
register int j, k;

ranf start (seed);
ranf matrix (aa ,mm , dd); /∗ Uniform distribution over [0, 1] ∗/
if (mode ≡ MODE_LOCKED_UNIFORM_DISTRIBUTION) return;
normdist (aa ,mm , dd); /∗ Normal distribution of unit variance around zero ∗/
if (mode ≡ MODE_LOCKED_NORMAL_DISTRIBUTION) return;
for (j = 0; j < dd ; j++) {
aa [0][j] = 0.0;
for (k = 1; k < mm ; k++) {
aa [k][j] += aa [k − 1][j];

}
}

}

This code is used in section 14.

19. Memory allocation. The dmatrix routine allocates an array of double floating-point precision, with
array row index ranging from nrl to nrh and column index ranging from ncl to nch .

〈Routine for memory allocation 19 〉 ≡
double ∗∗dmatrix (long nrl , long nrh , long ncl , long nch)
{
long i, nrow = nrh − nrl + 1, ncol = nch − ncl + 1;
double ∗∗m;

m = (double ∗∗) malloc((size t)((nrow + 1) ∗ sizeof (double ∗)));
if (¬m) {
fprintf (stderr , "%s: Allocation failure 1 in dmatrix()\n", progname);
exit (FAILURE);

}
m += 1;
m −= nrl ;
m[nrl] = (double ∗) malloc((size t)((nrow ∗ ncol + 1) ∗ sizeof (double)));
if (¬m[nrl]) {
fprintf (stderr , "%s: Allocation failure 2 in dmatrix()\n", progname);
exit (FAILURE);

}
m[nrl] += 1;
m[nrl] −= ncl ;
for (i = nrl + 1; i ≤ nrh ; i++) m[i] = m[i− 1] + ncol ;
return m;

}

This code is used in section 14.

20 DECLARATION OF ROUTINES WIENER §20

20. Memory de-allocation. The free dmatrix routine releases the memory occupied by the double floating-
point precision matrix v[nl .. nh], as allocated by dmatrix ().

〈Routine for memory de-allocation 20 〉 ≡
void free dmatrix (double ∗∗m, long nrl , long nrh , long ncl , long nch)
{
free ((char ∗)(m[nrl] + ncl − 1));
free ((char ∗)(m+ nrl − 1));

}

This code is used in section 14.

21. Displaying a help message at terminal output.

〈Routine for displaying a help message at terminal output 21 〉 ≡
void display help message (void)
{
fprintf (stderr , "Usage: %s M [options]\n", progname);
fprintf (stderr , "Options:\n");
fprintf (stderr , " −h, −−help\n");
fprintf (stderr , " Display this help message and exit clean.\n");
fprintf (stderr , " −v, −−verbose\n");
fprintf (stderr , " Toggle verbose mode. Default: off.\n");
fprintf (stderr , " −M, −−num_samples <M>\n");
fprintf (stderr , " Generate M samples of data. Here M should always be\n");
fprintf (stderr , " an even number, greater than the long lag KK=%d.\n", KK);
fprintf (stderr , " If an odd number is specified, the program will\n");
fprintf (stderr , " automatically adjust this to the next higher\n");
fprintf (stderr , " integer. Default: M=%d.\n", KK);
fprintf (stderr , " −D, −−dimension <D>\n");
fprintf (stderr , " Generate D−dimensional samples of data. Default: D=1.\n");
fprintf (stderr , " −s, −−seed <seed>\n");
fprintf (stderr , " Define a custom seed number for the initialization\n");
fprintf (stderr , " of the random number generator. Default: seed=%d.\n", DEFAULT_SEED);
fprintf (stderr , " −u, −−uniform\n");
fprintf (stderr , " Instead of generating a sequence of D−dimensional\n");
fprintf (stderr , " corresponding to a Wiener process, lock the program\n");
fprintf (stderr , " to simply generate a uniform distribution of\n");
fprintf (stderr , " D−dimensional points, with each element distributed\n");
fprintf (stderr , " over the interval [0,1].\n");
fprintf (stderr , " −n, −−normal\n");
fprintf (stderr , " Instead of generating a sequence of D−dimensional\n");
fprintf (stderr , " corresponding to a Wiener process, lock the program\n");
fprintf (stderr , " to simply generate a normal distribution of\n");
fprintf (stderr , " D−dimensional points, with each element distributed\n");
fprintf (stderr , " with zero expectation value and unit variance.\n");

}

This code is used in section 14.

§22 WIENER DECLARATION OF ROUTINES 21

22. Checking for a valid path character. The pathcharacter routine takes one character ch as argument,
and returns 1 (“true”) if the character is valid character of a path string, otherwise 0 (“false”) is returned.

〈Routine for checking valid path characters 22 〉 ≡
short pathcharacter (int ch)
{
return (isalnum (ch)∨ (ch ≡ ’.’)∨ (ch ≡ ’/’)∨ (ch ≡ ’\\’)∨ (ch ≡ ’_’)∨ (ch ≡ ’−’)∨ (ch ≡ ’+’));

}

This code is used in section 14.

23. Stripping path string from a file name. The strip away path routine takes a character string filename

as argument, and returns a pointer to the same string but without any preceding path segments. This
routine is, for example, useful for removing paths from program names as parsed from the command line.

〈Routine for stripping away path string 23 〉 ≡
char ∗strip away path (char filename [])
{
int j, k = 0;

while (pathcharacter (filename [k])) k++;
j = (−−k); /∗ this is the uppermost index of the full path+file string ∗/
while (isalnum ((int)(filename [j]))) j−−;
j++; /∗ this is the lowermost index of the stripped file name ∗/
return (&filename [j]);

}

This code is used in section 14.

22 DECLARATION OF ROUTINES WIENER §24

24. Declaration of local variables of the main program. In CWEB one has the option of adding variables
along the program, for example by locally adding temporary variables related to a given sub-block of code.
However, the philosophy in the WIENER program is to keep all variables of the main section collected
together, so as to simplify tasks as, for example, tracking down a given variable type definition. Exceptions
to this rule are dummy variables merely used for the iteration over loops, not participating in any other
tasks. The local variables of the program are as follows:

aa The M ×D matrix A, containing the M number of D-dimensional data points
for the generated Wiener process.

mm The M number of data points to generate. This equals to the number of rows
in the aa array (of dimension [M × D]), and must be at least KK elements.
The default initialization is mm = KK; however this may change depending on
supplied command-line parameters.

dd The dimension of each generated data point. Default value: 1.

seed The seed to use when initializing the random number generator, using the routine
ranf start . The seed can be hand-picked using the --seed command-line option.
Default value: 310952.

mode Determines if the sequence should be locked to simply generate a uniform dis-
tribution over the interval [0, 1] (MODE_LOCKED_UNIFORM_DISTRIBUTION) or a
normal (Gaussian) distribution with expectation value zero and unit variance
(MODE_LOCKED_NORMAL_DISTRIBUTION). Otherwise, the series of data will be
generated to simulate a Wiener process, as is the main purpose of the WIENER

program. One may look upon the two first modes as verification options, gener-
ating data suitable for spectral tests on the quality of the generator of pseudo-
random numbers.

〈Declaration of local variables 24 〉 ≡
double ∗∗aa ;
unsigned long mm = KK;
unsigned dd = 1;
int seed = DEFAULT_SEED;
short mode = MODE_WIENER_PROCESS, verbose = 0;
int no arg ;
register int j, k;

This code is used in section 10.

§25 WIENER DECLARATION OF ROUTINES 23

25. Parse command line for parameters. We here use the possibility open in CWEB to add getopt.h to
the inclusions of libraries, as this block is the only one making use of the definitions therein.

〈Parse command line for parameters 25 〉 ≡
progname = strip away path (argv [0]);
no arg = argc ;
while (−−argc) {
if (cmd match ("−h", "−−help", argv [no arg − argc])) {
display help message ();
exit (SUCCESS);

}
else if (cmd match ("−v", "−−verbose", argv [no arg − argc])) {
verbose = (verbose ? 0 : 1);

}
else if (cmd match ("−M", "−−num_samples", argv [no arg − argc])) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%lu",&mm)) {
fprintf (stderr , "%s: Error detected when parsing the number of ""samples.\n", progname);
display help message ();
exit (FAILURE);

}
if (mm < KK) {
fprintf (stderr ,

"%s: The M number of data points must be at least ""the long lag of the\

 generator, M >= KK = %d.\n", progname , KK);
exit (FAILURE);

}
if (is odd (mm)) mm++; /∗ If odd, then make it even ∗/

}
else if (cmd match ("−D", "−−dimension", argv [no arg − argc])) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%ud",&dd)) {
fprintf (stderr , "%s: Error detected when parsing dimension.\n", progname);
display help message ();
exit (FAILURE);

}
if (dd < 1) {
fprintf (stderr , "%s: Dimension D should be at least 1.\n", progname);
exit (FAILURE);

}
}
else if (cmd match ("−s", "−−seed", argv [no arg − argc])) {

−−argc ;
if (¬sscanf (argv [no arg − argc], "%d",&seed)) {
fprintf (stderr , "%s: Error detected when parsing the seed of the ""initializer.\n",

progname);
display help message ();
exit (FAILURE);

}
}
else if (cmd match ("−u", "−−uniform", argv [no arg − argc])) {
mode = MODE_LOCKED_UNIFORM_DISTRIBUTION ;

}

24 DECLARATION OF ROUTINES WIENER §25

else if (cmd match ("−n", "−−normal", argv [no arg − argc])) {
mode = MODE_LOCKED_NORMAL_DISTRIBUTION ;

}
else {
fprintf (stderr , "%s: Sorry, I do not recognize option ’%s’.\n", progname ,

argv [no arg − argc]);
display help message ();
exit (FAILURE);

}
}
if (verbose) fprintf (stdout , "This is %s v.%s. %s\n", progname , VERSION, COPYRIGHT);

This code is used in section 10.

26. Allocate memory for a vector containing M×D elements. We here make a call to the operating system
for the allocation of a sufficcient amount of memory to accommodate M data points, each of dimension D.
We here apply the common convention in C, starting the indexing of the allocated array at zero.

〈Allocate memory for a vector containing M ×D elements 26 〉 ≡
aa = dmatrix (0,mm − 1, 0, dd − 1);

This code is used in section 10.

27. Fill vector with M number of D:tuples describing the Wiener process.

〈Fill vector with M number of D:tuples describing the Wiener process 27 〉 ≡
wiener (aa ,mm , dd , seed ,mode);

This code is used in section 10.

28. Print the generated vector at standard terminal output.

〈Print the generated vector at standard terminal output 28 〉 ≡
for (k = 0; k < mm ; k++) {
for (j = 0; j < dd − 1; j++) printf ("%.20f ", aa [k][j]);
printf ("%.20f\n", aa [k][j]);

}

This code is used in section 10.

29. Deallocate the memory occupied by the vector of M ×D elements.

〈Deallocate the memory occupied by the vector of M ×D elements 29 〉 ≡
free dmatrix (aa , 0,mm − 1, 0, dd − 1);

This code is used in section 10.

§30 WIENER INDEX 25

30. Index.

aa : 15, 17, 18, 24, 26, 27, 28, 29.
argc : 10, 25.
argv : 10, 25.
ch : 22.
cmd match : 12, 25.
col : 15.
COPYRIGHT: 12, 25.
cos : 17.
dd : 15, 17, 18, 24, 25, 26, 27, 28, 29.
DEFAULT_SEED: 7, 12, 21, 24.
display help message : 21, 25.
dmatrix : 19, 20, 26.
exit : 11, 19, 25.
f : 17.
FAILURE: 12, 19, 25.
filename : 23.
fprintf : 11, 17, 19, 21, 25.
free : 20.
free dmatrix : 20, 29.
i: 15, 19.
is odd : 16, 25.
isalnum : 11, 22, 23.
j: 15, 16, 17, 18, 23, 24.
k: 17, 18, 23, 24.
KK: 7, 12, 15, 16, 18, 21, 24, 25.
LL: 12, 15, 16.
log : 17.
m: 19, 20.
main : 10, 24.
malloc : 19.
mm : 15, 17, 18, 24, 25, 26, 27, 28, 29.
mod sum : 15, 16.
mode : 18, 24, 25, 27.
MODE_LOCKED_NORMAL_DISTRIBUTION : 12, 18,

24, 25.
MODE_LOCKED_UNIFORM_DISTRIBUTION : 12, 18,

24, 25.
MODE_WIENER_PROCESS: 12, 24.
n: 15.
nch : 19, 20.
ncl : 19, 20.
ncol : 19.
nh : 20.
nl : 20.
no arg : 24, 25.
normdist : 9, 17, 18.
nrh : 19, 20.
nrl : 19, 20.
nrow : 19.
optarg : 13.
pathcharacter : 22, 23.

PI: 17.
printf : 28.
progname : 13, 17, 19, 21, 25.
QUALITY: 12, 13, 16.
ran array : 16.
ran start : 16.
ran u : 15, 16.
RAND_MAX: 15.
ranf arr buf : 13, 16.
ranf arr cycle : 16.
ranf arr dummy : 13, 16.
ranf arr next : 16.
ranf arr ptr : 13, 16.
ranf arr started : 13, 16.
ranf array : 12, 15, 16.
ranf matrix : 15, 17, 18.
ranf start : 12, 16, 18, 24.
s: 16.
seed : 16, 18, 24, 25, 27.
sin : 17.
sqrt : 17.
ss : 16.
sscanf : 25.
stderr : 17, 19, 21, 25.
stdout : 25.
strcmp : 11, 12.
strcpy : 11.
strip away path : 23, 25.
SUCCESS: 10, 12, 25.
t: 16.
TT: 16.
u: 16.
ulp : 16.
verbose : 24, 25.
VERSION: 12, 25.
wiener : 18, 27.
z: 17.

26 NAMES OF THE SECTIONS WIENER

〈Allocate memory for a vector containing M ×D elements 26 〉 Used in section 10.

〈Deallocate the memory occupied by the vector of M ×D elements 29 〉 Used in section 10.

〈Declaration of local variables 24 〉 Used in section 10.

〈Fill vector with M number of D:tuples describing the Wiener process 27 〉 Used in section 10.

〈Global definitions 12 〉 Used in section 10.

〈Global variables 13 〉 Used in section 10.

〈Library inclusions 11 〉 Used in section 10.

〈Parse command line for parameters 25 〉 Used in section 10.

〈Print the generated vector at standard terminal output 28 〉 Used in section 10.

〈Routine for checking valid path characters 22 〉 Used in section 14.

〈Routine for displaying a help message at terminal output 21 〉 Used in section 14.

〈Routine for generation of normally distributed variables 17 〉 Used in section 14.

〈Routine for generation of numerical data describing a Wiener process 18 〉 Used in section 14.

〈Routine for generation of uniformly distributed random numbers 15 〉 Used in section 14.

〈Routine for initialization of the random number generator 16 〉 Used in section 14.

〈Routine for memory allocation 19 〉 Used in section 14.

〈Routine for memory de-allocation 20 〉 Used in section 14.

〈Routine for stripping away path string 23 〉 Used in section 14.

〈Routines 14 〉 Used in section 10.

WIENER

Section Page
Introduction . 1 1
The Wiener process . 2 2
Compiling the source code . 6 4
Running the program . 7 8
The main program . 10 11
Declaration of routines . 14 13
Index . 30 25

