
§1 EPSIMG INTRODUCTION 1

December 24, 2011 at 11:19

1. Introduction.

Epsimg

Creates grey-scale Encapsulated PostScript images of matrices of numerical data

(Version 1.6 of February 21, 2004)

Written by Fredrik Jonsson

Given a matrix of floating-point numbers stored in a regular ASCII text file, this CWEB† program creates
a grey-scale Encapsulated PostScript (EPS) image of the matrix using its elements as specification of the
brightness of the corresponding pixels in the image.
I do by no means claim to have written a program that generates fully optimized Encapsulated PostScript.

The output images are in many cases large, and can in many cases be considerably reduced in size, in
particular for binary or few-level grayscale images, for which run-length encoding easily can be applied. (In
run-length encoding a long row of identical pixels is parametrized as a loop, without the need of individual
specification of each pixel.) However, for my purposes it works fine, since I often only is concerned with the
evaluation of gray-scale images, generated by mathematical means and often with no a priori specification
of the number of intensity levels.
Of course, there are other ways of generating Encapsulated PostScript images of sampled of simulated data,

as for example using the image() function of MATLAB. An advantage with using a stand-alone program,
however, is that it is easily incorporated in scripts for batch processing. In addition, the EPSIMG program is
provided free of charge.

Copyright c© Fredrik Jonsson, 2004. All rights reserved.

† For information on the CWEB programming language by Donald E. Knuth, as well as samples of CWEB

programs, see http://www-cs-faculty.stanford.edu/~knuth/cweb.html. For general information on
literate programming, see http://www.literateprogramming.com.

2 REVISION HISTORY OF THE PROGRAM EPSIMG §2

2. Revision history of the program.

2004-01-26 [v.1.0] <jonsson@uni-wuppertal.de>
First properly working version of the EPSIMG program. I have now for a longer time had
in my mind that it would be useful to write a stand-alone program that is capable of
generating Encapsulated PostScript images of data matrices, in similar to the image()
built-in function of MATLAB. In particular, I have lately encountered some problems
involving the optical analysis of diffraction patterns, and in order to visualize my
generated data (without having to use MATLAB every time) I this evening started the
coding in CWEB.

2004-01-27 [v.1.1] <jonsson@uni-wuppertal.de>
Continued with cleaning up the code and adding some features, such as the possibility
of letting the program add a frame outlining the bounding box of the Encapsulated
PostScript image, and a scaling of the x- or y-axis to leave the aspect ratio of the square
pixels invariant even for non-square input matrices. Also changed the precision of the
coordinates and gray scale specifications in order to get really smooth images. However,
there still seem to remain some bug that causes the program to refuse to accept data files
containing lines with trailing blank spaces and additional line feeds. [Coding finished
at 00:45, 2004-01-28]

2004-01-28 [v.1.2] <jonsson@uni-wuppertal.de>
This morning fixed the remaining bug from yesterday, and wrote a basic example
(example1) as a block in the Makefile, using AWK to generate a simple interference
pattern that is visualized with the help of the EPSIMG program. Also wrote blocks that
provide a proper rescaling of the image width or height whenever either the width or
height is larger than their respective maximum values. Wrote an example (example2)
in the Makefile that illustrates this automatic rescaling of the image.

2004-01-30 [v.1.3] <jonsson@uni-wuppertal.de>
This evening (time is now 01:55 Saturday morning) I started to sketch on a partitioning
scheme for the reduction of data neccessary to save to disk. For many of my diffraction
images, there are large areas that are of equal shade, and since they have considerable
extent in the x- as well as y-direction, a run-length encoding (of the type used in the
ancient program for generation of fractals that I wrote together with Tommy Ekola in
1996) of the Encapsulated PostScript will not fix the problem to any greater extent.
Therefore, I started formulating a recursive scheme for the partitioning of data into
smaller and smaller sub-blocks of the user-supplied matrix, which I for the sake of
simplicity so far have assumed to be square, of size [2M × 2M] for some integer M .
Wrote a MetaPost figure matfig.mp that illustrates the partition scheme.

2004-02-07 [v.1.4] <jonsson@uni-wuppertal.de>
[Athens, Greece] Noticed that when viewed using Ghostview, the figures could not be
zoomed properly. This was corrected by letting the program explicitly state %%!PS-

Adobe-2.0 EPSF-1.2, and by also explicitly stating the number of pages (that is to say,
one) of the figure in the Encapsulated PostScript preamble, using %%Pages: 1.

2004-02-20 [v.1.5] <jonsson@uni-wuppertal.de>
[Östergarn, Gotland] Added the command-line options --commmented postscript and
--uncommmented postscript, explicitly forcing the program either to include comments
on PostScript routines directly into the generated code (default), or forcing the program
to suppress these comments (giving a slightly reduced size on disk).

2004-02-21 [v.1.6] <jonsson@uni-wuppertal.de>
[Östergarn, Gotland] Wrote the final blocks of a major revision of the program, con-
cerning the algorithm for generation of individual pixels. While the program previously
explicitly stated the pixel boundaries as paths, I have now replaced this by a PostScript

§2 EPSIMG REVISION HISTORY OF THE PROGRAM 3

routine drawpixel that takes a pixel bounding box given by the lower left and upper
right corners (〈llx 〉, 〈lly 〉) and (〈urx 〉, 〈ury 〉) and draws and fills the pixel with a spec-
ified gray value. The syntax for this PostScript routine is (in the PostScript language)
simply drawpixel 〈llx 〉 〈lly 〉 〈urx 〉 〈ury 〉 〈w〉, where 〈w〉 ∈ [0, 1] is the whiteness of the
actual pixel. I did, however, keep the possibility of generating the previous, more exten-
sive form of PostScript, and in order to be able to switch the program into either mode,
the options --compactified pixelcode and --extensive pixelcode were added as
parts of the startup syntax. When applied to the previously written example with a
64 × 64-sized matrix of real numbers, the size of the generated was radically reduced
from 590.3 kB to 152.4 kB, hence corresponding to a reduction by 74%! However, there
still remain to optimize the code, especially to write PostScript routines that takes the
image matrix and automatically loops over the indices, instead of the current approach,
where the bounding box of each individual pixel still is specified in the code. (The
image generated by the image() routine of MATLAB is still considerably smaller in size
than what the now optimized algorithm provides; so far the generated PostScript takes
approximately 37 byte per pixel, which is far too much even for “educational purpose”.)
What remains now is to also include the more clever partitioning of the image for cases
with many adjacent pixels of identical gray value.

Figure R1. The example 64× 64 image used in evaluating size reduction 2004-02-21.

4 COMPILING THE SOURCE CODE EPSIMG §3

3. Compiling the source code. The program is written in CWEB, generating ANSI-C conforming
source code and documentation as TEX-source, and is to be compiled using the enclosed Makefile, leaving
an executable file epsimg† and a PostScript file epsimg.ps (the document you currently are reading), which
contains the full documentation of the program:

#

Makefile designed for use with ctangle, cweave, gcc, and plain TeX.

#

Copyright (C) 2004, Fredrik Jonsson <jonsson@uni-wuppertal.de>

#

CTANGLE = ctangle

CC = gcc

CCOPTS = -O2 -Wall -ansi -pedantic # follow ISO C89 (ANSI) strictly

LNOPTS = -lm

CWEAVE = cweave

TEX = tex

DVIPS = dvips

DVIPSOPT = -ta4 -D1200

all: epsimg.exe epsimg.ps

epsimg.exe: epsimg.o # generate the executable file

$(CC) $(CCOPTS) -o epsimg epsimg.o $(LNOPTS)

epsimg.o: epsimg.c # generate the object file

$(CC) $(CCOPTS) -c epsimg.c

epsimg.c: epsimg.w # generate C code from the CWEB source

$(CTANGLE) epsimg

epsimg.ps: epsimg.dvi # generate the PostScript documentation

$(DVIPS) $(DVIPSOPT) epsimg.dvi -o epsimg.ps

epsimg.dvi: epsimg.tex # generate the device-independent documentation

$(TEX) epsimg.tex

epsimg.tex: epsimg.w # generate plain TeX code from the CWEB source

$(CWEAVE) epsimg

clean:

-rm -Rf *.c *.o *.exe *.aux *.log *.toc *.idx *.scn *.tex *.dvi

† On platforms running Windows NT, Windows 2000, or any other operating system by Microsoft, the
executable file will instead automatically be called epsimg.exe.

§4 EPSIMG RUNNING THE PROGRAM 5

4. Running the program. The program is entirely controlled by the command line options supplied
when invoking the program, and the syntax is simply:

epsimg -i <infile> -o <outfile>

where <infile> is a regular text file containing the matrix of numerical data, and <outfile> is the name
of the Encapsulated PostScript image that is to be generated. Instead of -i and -o, the switches can
equivalently be specified in their longer forms --inputfile and --outputfile, respectively.
Several options may additionally be specified; to see a listing of all available options, simply invoke EPSIMG

with the help switch -h (or, equivalently, --help in a longer form), as

epsimg -h

6 COMPRESSING THE SIZE OF THE GENERATED ENCAPSULATED POSTSCRIPT EPSIMG §5

5. Compressing the size of the generated Encapsulated Postscript. In a general sense, the input
to the EPSIMG program is just an arbitrary matrix of numbers, with no a priori assumption on their individual
values or their ordering. In many images, however, there are large areas of equal colour (or brightness, if we
stick to the fact that the EPSIMG program primarily is designed for the visualization of gray scale images),
and instead of sequentially writing a large list of identical squares, of the same shading but slightly displaced
with respect to one another, one may start thinking that there must be a more efficient method of saving
the image to file.
One possibility is to check the structure sequentially in the order the squares are written, and in case many

boxes of the same shade appear, say in the row direction of the supplied matrix, a rectangle with this shade
and with a length corresponding to the number of equal squares is to be drawn instead. This, however, may
be an inefficient method as well, since any directionality in the image in the column direction of the matrix
will be left unnoticed. In addition, if there are large fields of equal shade, a lot of neighbouring rows should
be possible to further reduce, for example by instead drawing general rectangles which no longer need to be
of the same height as the basic pixels.
The question therefore arises: Would it not be possible to make a relatively simple divide-and-conquer

description of the matrix, partitioning the matrix into rectangular building blocks of equal shade? In Fig. 1,
on possibility of a partitioning scheme for the reduction of the data needed to save to disk is illustrated.

(1, 1)

(N/2, N/2)

(N/2 + 1, N/2 + 1)

(N/2, N/2 + 1)

(N/2 + 1, N/2)

(N,N)(N, 1)

(1, N)

(increasing column index)

(i
n
cr
ea
si
n
g
ro
w

in
d
ex
)

Figure 1. A possible partitioning scheme for square matrices of size [2M × 2M].

§6 EPSIMG THE MAIN PROGRAM 7

6. The main program. Here follows the general outline of the main program.
For the flags that are internally used, for the settings of desired program actions, the significance of the

flags are: COMPACTIFIED_PIXELCODE If set to a positive nonzero integer value, this flag causes the program
to generate a compactified PostScript code for the definitions of the individual boxes of the image, i.e. the
individual pixels.
In order to have one single and generic output stream, the OUTSTREAM definition provides an easy solution

to switching the output from file to terminal output, depending on which options that are detected at the
command line during startup of the program.

#include <math.h>

#include <stdio.h>

#include <stddef.h>

#include <stdlib.h>

#include <string.h>

#include <time.h> /∗ to get automatically generated timestamp in EPS header ∗/
#include <ctype.h> /∗ to access isalnum () ∗/
#define VERSION_NUMBER "1.6"

#define A4_PAGE_WIDTH (594) /∗ A4 page width in pt (1/72 in) ∗/
#define A4_PAGE_HEIGHT (841) /∗ A4 page height in pt (1/72 in) ∗/
#define MAXIMUM_IMAGE_WIDTH (A4_PAGE_WIDTH − 144) /∗ 1.0 inch default margin ∗/
#define MAXIMUM_IMAGE_HEIGHT (A4_PAGE_HEIGHT − 144) /∗ 1.0 inch default margin ∗/
#define DEFAULT_IMAGE_WIDTH (0.8 ∗ MAXIMUM_IMAGE_WIDTH)
#define DEFAULT_IMAGE_XCENTER (A4_PAGE_WIDTH/2)
#define DEFAULT_IMAGE_YCENTER (A4_PAGE_HEIGHT/2)
#define DEFAULT_LINETHICKNESS 1 /∗ default line thickness in pt (1/72 in) ∗/
#define OUTSTREAM (outfile specified ? fpout : stdout)
#define SUCCESS 0 /∗ Return code for successful program termination ∗/
#define FAILURE 1 /∗ Return code for program termination caused by failure ∗/
#define COMPACTIFIED_PIXELCODE 1
#define EXTENSIVE_PIXELCODE 2
〈Global variables 7 〉
〈 Subroutines 8 〉

int main (int argc , char ∗argv [])
{
〈Local variables 16 〉
〈Parse command line 17 〉
〈Open files 19 〉
〈Load text file into image matrix 20 〉
〈Normalize image matrix 21 〉
〈 Initialize parameters of Encapsulated PostScript image 22 〉
〈Write preamble of Encapsulated PostScript image 23 〉
〈Write body of Encapsulated PostScript image 24 〉
〈Write closing of Encapsulated PostScript image 27 〉
〈Deallocate image matrix 28 〉
〈Close files 29 〉
return (SUCCESS);

}

8 DECLARATION OF GLOBAL VARIABLES EPSIMG §7

7. Declaration of global variables. The only global variables allowed in my programs are optarg ,
which is the string of characters that specified the call from the command line, and progname , which simply
is the string containing the name of the program, as it was invoked from the command line.

〈Global variables 7 〉 ≡
extern char ∗optarg ; /∗ command line string ∗/
char ∗progname ; /∗ name of the program as invoked from command line ∗/

This code is used in section 6.

§8 EPSIMG DECLARATIONS OF SUBROUTINES USED BY THE PROGRAM 9

8. Declarations of subroutines used by the program.

〈 Subroutines 8 〉 ≡
〈Display help message 9 〉
〈Routine for allocation of double vectors 10 〉
〈Routine for allocation of double matrices 11 〉
〈Routine for deallocation of double vectors 12 〉
〈Routine for deallocation of double matrices 13 〉
〈Routine for loading matrix data from text file 14 〉
〈Routine for unloading matrix data previously loaded from text file 15 〉

This code is used in section 6.

9. Routine for displaying a help message at the screen.

〈Display help message 9 〉 ≡
void showsomehelp(void)
{
fprintf (stderr , "Usage: %s −i infile [options] [−o outfile]\n", progname);
fprintf (stderr , "Options:\n");
fprintf (stderr , " −i, −−inputfile <str> Specifies the file where to find \

the intensity\n"" response for the actual property.\n");
fprintf (stderr , " −o, −−outputfile <str> Specifies the file where to save \

the trans−\n"" mitted optical pulse shape. Whene\

ver this\n");
fprintf (stderr , " option is not present at the comm\

and line,\n"" the generated time series will be\

 written\n"" to standard terminal output inste\

ad, in\n"" which case any set verbose mode w\

ill be turned\n"" off (see −v option).\n");
fprintf (stderr , " −s, −−sequential Toggle sequential mode. Default: \

off.\n"" When generating the Encapsulated \

PostScript,\n"" in sequential mode, the data\n");
fprintf (stderr , " is scanned column/row−wise, with \

an individual\n"" pixel written for each data point\

 of the input\n"" matrix. In this mode the program \

will ignore\n"" any possibilities of reducing the\

 data through\n"" a more efficient partitioning of \

the input\n"" matrix.\n");
fprintf (stderr , " −v, −−verbose Toggle verbose mode. If no output\

 filename was\n"" specified at the command line, ve\

rbose mode\n"" will automatically be turned off,\

 in order for\n"" output messages not to interfere \

with the\n"" generated Encapsulated PostScript\

 code.\n"" Default: off\n");
fprintf (stderr , " −h, −−help Display this help message and exit clean\n");
fprintf (stderr , "Copyright (C) 2004 Fredrik Jonsson <jonsson@uni−wuppertal.de>\n");

}

This code is used in section 8.

10 DECLARATIONS OF SUBROUTINES USED BY THE PROGRAM EPSIMG §10

10. The dvector () routine allocate a real-valued vector of double precision, with vector index ranging from
nl to nh .

〈Routine for allocation of double vectors 10 〉 ≡
double ∗dvector (long nl , long nh)
{
double ∗v;

v = (double ∗) malloc((size t)((nh − nl + 2) ∗ sizeof (double)));
if (¬v) {
fprintf (stderr , "Error: Allocation failure in dvector()\n");
exit (FAILURE);

}
return v − nl + 1;

}

This code is used in section 8.

11. The dmatrix () routine allocate a real-valued matrix of double precision, with row index ranging from
nrl to nrh , and column index ranging from ncl to nch .

〈Routine for allocation of double matrices 11 〉 ≡
double ∗∗dmatrix (long nrl , long nrh , long ncl , long nch)
{
long i, nrow = nrh − nrl + 1, ncol = nch − ncl + 1;
double ∗∗m;

m = (double ∗∗) malloc((size t)((nrow + 1) ∗ sizeof (double ∗)));
if (¬m) {
fprintf (stderr , "%s: Allocation failure 1 in dmatrix() routine!\n", progname);
exit (FAILURE);

}
m += 1;
m −= nrl ;
m[nrl] = (double ∗) malloc((size t)((nrow ∗ ncol + 1) ∗ sizeof (double)));
if (¬m[nrl]) {
fprintf (stderr , "%s: Allocation failure 2 in dmatrix() routine!\n", progname);
exit (FAILURE);

}
m[nrl] += 1;
m[nrl] −= ncl ;
for (i = nrl + 1; i ≤ nrh ; i++) m[i] = m[i− 1] + ncol ;
return m;

}

This code is used in section 8.

12. The free dvector () routine release the memory occupied by the real-valued vector v[nl .. nh].

〈Routine for deallocation of double vectors 12 〉 ≡
void free dvector (double ∗v, long nl , long nh)
{
free ((char ∗)(v + nl − 1));

}

This code is used in section 8.

§13 EPSIMG DECLARATIONS OF SUBROUTINES USED BY THE PROGRAM 11

13. The free dmatrix () routine release the memory occupied by the real-valued matrix m[nrl .. nrh][ncl ..
nch].

〈Routine for deallocation of double matrices 13 〉 ≡
void free dmatrix (double ∗∗m, long nrl , long nrh , long ncl , long nch)
{
free ((char ∗)(m[nrl] + ncl − 1));
free ((char ∗)(m+ nrl − 1));

}

This code is used in section 8.

12 DECLARATIONS OF SUBROUTINES USED BY THE PROGRAM EPSIMG §14

14. The load matrix () routine takes as input a character string inputfilename , specifying a regular text
file of ASCII data stored as a matrix, and returns a pointer m to a matrix of double precision, containing
the numerical values as appearing if the text file. The routine also automatically scans the input matrix
size, and returns the number of rows in nr and the number of columns in nc . The number of columns is
determined as the number of elements in the first row of data of the supplied text file. All subsequent rows
are assumed to contain exactly the same number of elements; if this is not the case, an error message will
be displayed on standard terminal output. The minimum and maximum elements found in the matrix are
returned in the variables min and max , respectively.
Example of usage:

double **imagematrix,min,max;

long int nr,nc;

imagematrix=load matrix("image.dat",nr,nc,min,max);

fprintf(stdout,"Detected %ld rows and %ld columns of data.n",nr,nc);

fprintf(stdout,"Minimum element: %fn",min);

fprintf(stdout,"Maximum element: %fn",max);

〈Routine for loading matrix data from text file 14 〉 ≡
char validchar (char ch)
{
return (isalnum (ch) ∨ (ch ≡ ’+’) ∨ (ch ≡ ’−’) ∨ (ch ≡ ’.’));

}

double ∗∗load matrix (char inputfilename [], long ∗nr , long ∗nc ,double ∗min ,double ∗max)
{
FILE ∗fpin = Λ;
char tmpch ;
long j, k, nrt , nct ;
double tmpd , ∗∗m, tmin , tmax ;

if ((fpin = fopen (inputfilename , "r")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for reading!\n", progname , inputfilename);
exit (FAILURE);

}
fseek (fpin , 0L, SEEK_SET);
fscanf (fpin , "%lf",&tmpd);
tmin = tmpd ; /∗ initialize memory for minimum element ∗/
tmax = tmpd ; /∗ initialize memory for maximum element ∗/
fseek (fpin , 0L, SEEK_SET);
nct = 0; /∗ initialize column counter ∗/
while ((tmpch = getc(fpin)) 6= ’\n’) { /∗ determine column size nc ∗/
ungetc (tmpch , fpin);
while ((tmpch = getc(fpin)) ≡ ’ ’) ; /∗ get rid of any leading blanks ∗/
ungetc (tmpch , fpin);
while (validchar (tmpch = getc(fpin))) ; /∗ scan pass field for valid char ∗/
ungetc (tmpch , fpin);
nct ++;
while ((tmpch = getc(fpin)) ≡ ’ ’) ; /∗ get read of any trailing blanks ∗/
ungetc (tmpch , fpin);

}
fseek (fpin , 0L, SEEK_SET);
nrt = 0; /∗ initialize row counter ∗/
while ((tmpch = getc(fpin)) 6= EOF) { /∗ determine row size nr ∗/
ungetc (tmpch , fpin);

§14 EPSIMG DECLARATIONS OF SUBROUTINES USED BY THE PROGRAM 13

for (k = 1; k ≤ nct ; k++) fscanf (fpin , "%lf",&tmpd);
nrt ++;
tmpch = getc(fpin);
while ((tmpch ≡ ’ ’) ∨ (tmpch ≡ ’\n’)) tmpch = getc(fpin);
if (tmpch 6= EOF) ungetc (tmpch , fpin);

}
m = dmatrix (1, nrt , 1, nct);
fseek (fpin , 0L, SEEK_SET);
for (j = 1; j ≤ nrt ; j++) { /∗ for all rows, ... ∗/
for (k = 1; k ≤ nct ; k++) { /∗ and for all columns, ... ∗/
fscanf (fpin , "%lf",&tmpd);
m[j][k] = tmpd ;
if (tmpd < tmin) tmin = tmpd ;
else if (tmpd > tmax) tmax = tmpd ;

}
}
fclose (fpin);
∗nr = nrt ;
∗nc = nct ;
∗min = tmin ;
∗max = tmax ;
return m;

}

This code is used in section 8.

15. The unload matrix () routine simply releases memory previously allocated by the load matrix () rou-
tine.

〈Routine for unloading matrix data previously loaded from text file 15 〉 ≡
void unload matrix (double ∗∗m, long nr , long nc)
{
free dmatrix (m, 1, nr , 1, nc); /∗ yes, it is this simple... ∗/

}

This code is used in section 8.

14 DECLARATION OF LOCAL VARIABLES OF THE MAIN PROGRAM EPSIMG §16

16. Declaration of local variables of the main program.

〈Local variables 16 〉 ≡
double ∗∗imagematrix , min , max , dx , dy , llx , lly , urx , ury ;
double imagewidth , imageheight , imagexcenter , imageycenter ;
double linethickness = DEFAULT_LINETHICKNESS;
time t now = time (Λ);
long int j, k, nr , nc ;
int no arg , bbllx , bblly , bburx , bbury ;
FILE ∗fpout = Λ;
char inputfilename [256] = "", outputfilename [256] = "";
short verbose = 0, write floatform = 0, write frame = 1;
short infile specified = 0, outfile specified = 0, parse data sequentially = 1;
short write title = 0;
short pixel generation mode = COMPACTIFIED_PIXELCODE;
short comments in postscript = 1;

This code is used in section 6.

§17 EPSIMG PARSING COMMAND LINE OPTIONS 15

17. Parsing command line options. All input parameters are passed to the program through com-
mand line options and arguments to the program. The syntax of command line options is listed whenever
the program is invoked without any options, or if the --help option is specified at startup.

〈Parse command line 17 〉 ≡
{
progname = argv [0];
no arg = argc ;
while (−−argc) {
if (¬strcmp(argv [no arg − argc], "−o") ∨ ¬strcmp(argv [no arg − argc], "−−outputfile")) {

−−argc ;
strcpy (outputfilename , argv [no arg − argc]);
outfile specified = 1;

}
else if (¬strcmp(argv [no arg − argc], "−i") ∨ ¬strcmp(argv [no arg − argc], "−−inputfile")) {

−−argc ;
strcpy (inputfilename , argv [no arg − argc]);
infile specified = 1;

}
else if ((¬strcmp(argv [no arg − argc], "−f")) ∨ (¬strcmp(argv [no arg − argc], "−−floatform"))) {
write floatform = (write floatform ? 0 : 1);
if (verbose) fprintf (stdout , "%s: Using floating number output.\n", progname);

}
else if ((¬strcmp(argv [no arg − argc], "−r"))∨ (¬strcmp(argv [no arg − argc], "−−writeframe"))) {
write frame = (write frame ? 0 : 1);

}
else if (¬strcmp(argv [no arg − argc], "−−commmented_postscript")) {
comments in postscript = 1;

}
else if (¬strcmp(argv [no arg − argc], "−−uncommmented_postscript")) {
comments in postscript = 0;

}
else if (¬strcmp(argv [no arg − argc], "−−compactified_pixelcode")) {
pixel generation mode = COMPACTIFIED_PIXELCODE;

}
else if (¬strcmp(argv [no arg − argc], "−−extensive_pixelcode")) {
pixel generation mode = EXTENSIVE_PIXELCODE;

}
else if (¬strcmp(argv [no arg − argc], "−v") ∨ ¬strcmp(argv [no arg − argc], "−−verbose")) {
verbose = (verbose ? 0 : 1);

}
else if (¬strcmp(argv [no arg − argc], "−s") ∨ ¬strcmp(argv [no arg − argc], "−−sequential")) {
parse data sequentially = (parse data sequentially ? 0 : 1);

}
else {
fprintf (stderr , "%s: Unknown option ’%s’.\n", progname , argv [no arg − argc]);
exit (FAILURE);

}
}
if (¬outfile specified) verbose = 0; /∗ terminal output EPS should be clean ∗/

}

This code is used in section 6.

16 OPENING AND CLOSING FILES FOR DATA OUTPUT EPSIMG §18

18. Opening and closing files for data output.

19. Open files for reading and writing.

〈Open files 19 〉 ≡
{
if (outfile specified) {
if ((fpout = fopen (outputfilename , "w")) ≡ Λ) {
fprintf (stderr , "%s: Could not open file %s for writing!\n", progname , outputfilename);
exit (FAILURE);

}
fseek (fpout , 0L, SEEK_SET);

}
else {
if (verbose)
fprintf (stdout , "%s: No output file specified. (Writing to stdout).\n", progname);

}
}

This code is used in section 6.

20. Loading the text file into memory. In this first step, the specified input text file is opened, and is loaded
into memory allocated by the dmatrix routine. The memory area is accessed via the pointer ∗∗imagematrix ,
which is the basic variable used later on by the blocks that write the Encapsulated PostScript image to file.
After the data is loaded, the input file is closed.

〈Load text file into image matrix 20 〉 ≡
{
if (infile specified) {
if (verbose) fprintf (stderr , "%s: Loading data from file %s.\n", progname , inputfilename);
imagematrix = load matrix (inputfilename ,&nr ,&nc ,&min ,&max);
if (verbose) {
fprintf (stdout , "%s: Detected %ld rows and %ld columns of data in file ’%s’.\n",

progname , nr , nc , inputfilename);
fprintf (stdout , "%s: Maximum element in ’%s’: %f\n", progname , inputfilename ,max);
fprintf (stdout , "%s: Minimum element in ’%s’: %f\n", progname , inputfilename ,min);

}
}
else {
fprintf (stderr , "%s: Error: Specify an input filename.\n", progname);
showsomehelp ();
exit (FAILURE);

}
}

This code is used in section 6.

§21 EPSIMG OPENING AND CLOSING FILES FOR DATA OUTPUT 17

21. Normalize the image matrix. In order to write a properly scaled Encapsulated PostScript image to
file, the loaded data need to be normalized, so that the elements arenumerical values between 0 and 1.

〈Normalize image matrix 21 〉 ≡
{
if (verbose) fprintf (stdout , "%s: Normalizing image matrix.\n", progname);
for (j = 1; j ≤ nr ; j++) { /∗ for all rows, ... ∗/
for (k = 1; k ≤ nc ; k++) { /∗ and for all columns, ... ∗/
imagematrix [j][k] = imagematrix [j][k]−min ;
imagematrix [j][k] = imagematrix [j][k]/(max −min);

}
}

}

This code is used in section 6.

18 OPENING AND CLOSING FILES FOR DATA OUTPUT EPSIMG §22

22. Initialize the parameters to be used for the Encapsulated PostScript image. The parameters to be set
prior to the calculation of positioning of the individual pixels of the image are the corner coordinates for the
bounding box. The x-height and y-width of the image are generally scaled such that the aspect ratio of the
image is left invariant under scaling of any of the coordinate axes.
By default, the program will use the width as reference for scaling the height of the image, to give an

aspect ratio (height/width) that leaves the individual pixels as squares. If, however, the program finds that
the calculated image height exceed the maximum allowed, then the height will be fixed to its maximum
value, instead scaling the width of the image (to still give an equal aspect ratio).
The values here used for the maximum extents of the picture are based on that for an A4 paper, the

limiting bounding box is between the lower left corner at (0, 0) pt and upper right corner at (594, 841) pt.

(0 mm, 0 mm)

(210 mm, 297 mm)

(xc, yc)

A4 PAGE WIDTH = 594 pt = 210 mm

A
4
P
A
G
E
H
E
I
G
H
T
=

84
1
p
t
=

29
7
m
m

(llx, lly)

(urx, ury)

MAXIMUM IMAGE WIDTH

M
A
X
I
M
U
M
I
M
A
G
E
H
E
I
G
H
T

(bbllx, bblly)

(bburx, bbury)

imagewidth

i
m
a
g
e
h
e
i
g
h
t

Figure 2. The page layout and definitions as used for the initialization of the Encapsulated PostScript image.

〈 Initialize parameters of Encapsulated PostScript image 22 〉 ≡
{

§22 EPSIMG OPENING AND CLOSING FILES FOR DATA OUTPUT 19

imagewidth = ((double)(DEFAULT_IMAGE_WIDTH));
imageheight = (((double) nr)/((double) nc)) ∗ ((double)(DEFAULT_IMAGE_WIDTH));
imagexcenter = DEFAULT_IMAGE_XCENTER;
imageycenter = DEFAULT_IMAGE_YCENTER;
if (imageheight > MAXIMUM_IMAGE_HEIGHT) {
if (verbose) {
fprintf (stdout , "%s: Warning. I found that the height of ", progname);
fprintf (stdout , "the image exceeds its maximum\n");
fprintf (stdout , "%s: value of %d pt.\n", progname , ((int) MAXIMUM_IMAGE_HEIGHT));
fprintf (stdout , "%s: Will now instead scale the width of the image.\n", progname);

}
imageheight = MAXIMUM_IMAGE_HEIGHT;
imagewidth = (((double) nc)/((double) nr)) ∗ imageheight ;

}
else {
if (verbose) {
fprintf (stdout , "%s: Image height automatically scaled to ", progname);
fprintf (stdout , "width (to give equal aspect ratio).\n");

}
}
bbllx = imagexcenter − imagewidth/2.0;
bblly = imageycenter − imageheight/2.0;
bburx = imagexcenter + imagewidth/2.0;
bbury = imageycenter + imageheight/2.0;

}

This code is used in section 6.

20 OPENING AND CLOSING FILES FOR DATA OUTPUT EPSIMG §23

23. Write the leading blocks of Encapsulated PostScript code. If the flag pixel generation mode is set to
COMPACTIFIEDPIXELCODE, then an additional routine for the generation of the individual pixels will be added
just after the comments in the preamble; otherwise, the generated code will be self-contained in the sense
that the individual pixels are defined as free-standing drawing statements in the code. Notice that the type
of output stream (terminal output or file pointer, depending on the options present at the command line
at startup of the program) is determined by the current definition provided by OUTSTREAM. Notice that the
string returned by the ctime () routine ends with a linefeeed.
The blocks dealing with the definition of the PostScript routine for a more “compactified” output code

clearly deserves some more detailed description. The syntax for drawing an individual pixel, determined by
the bounding box given by its lower left and upper right corners (xll, yll) and (xur, yur) is

/drawpixel 〈llx 〉 〈lly 〉 〈urx 〉 〈ury 〉 〈w〉,

where llx = xll, lly = yll, urx = xur, and ury = yur. This definition is illustrated in Fig. 3 below. In this
description of the syntax, w ∈ [0, 1] is the whiteness value of the pixel, with 0 corresponding to black, and 1
corresponding to white.

(xll, yll)

(xur, yur)

Figure 3. Illustration of the definition of a pixel in terms of its lower left and upper right corners.

In the PostScript routine /drawpixel, the following commands of the PostScript languange are used for
manipulation of the stack:

dup Duplicates the bottom element in the stack, and then pushes it into the stack. This
operation is similar to the ENTER as used in reverse polish notation employed in, for
example, Hewlett–Packard calculators.

exch Interchanges the two bottom-most elements in the stack. This operation is identical to
SWAP.

〈m〉 〈n〉 roll Rolls down the m bottom-most elements of the stack n times, that is to say, applying cyclic
permutation n times on the first m elements. In analogy with the ROLLD operation of
reverse polish notation of Hewlett–Packard calculators, this is identical to executing the
operation “m ROLLD” exactly n times. Notice that 〈m〉 〈m〉 roll always just gives the
identity operation on the stack for arbitrary m (of course provided that m is not greater
than the number of elements that currently are present in the stack).

〈Write preamble of Encapsulated PostScript image 23 〉 ≡
{
fprintf (OUTSTREAM, "%%!PS−Adobe−2.0 EPSF−1.2\n");
fprintf (OUTSTREAM, "%%%%BoundingBox: %d %d %d %d\n", bbllx , bblly , bburx , bbury);
fprintf (OUTSTREAM, "%%%%Creator: epsimg %s", VERSION_NUMBER);
fprintf (OUTSTREAM, " Copyright (C) 2004 Fredrik Jonsson\n");
if (outfile specified) fprintf (OUTSTREAM, "%%%%Title: %s\n", outputfilename);
else fprintf (OUTSTREAM, "%%%%Title: (image written to stdout)\n");
fprintf (OUTSTREAM, "%%%%CreationDate: %s", ctime (&now));
fprintf (OUTSTREAM, "%%%%Pages: 1\n");
fprintf (OUTSTREAM, "%%%%EndProlog\n");
fprintf (OUTSTREAM, "%%%%Pages: 1\n");
fprintf (OUTSTREAM, "%%%%Page: 1 1\n");

§23 EPSIMG OPENING AND CLOSING FILES FOR DATA OUTPUT 21

if (pixel generation mode ≡ COMPACTIFIED_PIXELCODE) {
if (comments in postscript) {
fprintf (OUTSTREAM, "%%\n");
fprintf (OUTSTREAM, "%% Routine for duplicating the bottom−most pair");
fprintf (OUTSTREAM, " of elements in the stack.");
fprintf (OUTSTREAM, "%%\n");

}
fprintf (OUTSTREAM, "/dupc {dup 3 2 roll dup 4 1 roll exch} bind def");
if (comments in postscript) {
fprintf (OUTSTREAM, "%%\n");
fprintf (OUTSTREAM, "%% Routine for calculating the lower right corner");
fprintf (OUTSTREAM, " coordinates of the pixel.\n");
fprintf (OUTSTREAM, "%% The syntax is simply ’<llx> <lly> <urx> <ury> ");
fprintf (OUTSTREAM, " lrc’, where (<llx>,<lly>)\n");
fprintf (OUTSTREAM, "%% and (<urx>,<ury>) are the");
fprintf (OUTSTREAM, " lower left and upper right corner coordinates\n");
fprintf (OUTSTREAM, "%% of the pixel. The resulting (<lrx>,<lry>) pair");
fprintf (OUTSTREAM, " are after the calculation\n%% pushed onto the");
fprintf (OUTSTREAM, " stack, preserving the previously present stack");
fprintf (OUTSTREAM, " at above\n%% levels.\n");
fprintf (OUTSTREAM, "%%\n");

}
fprintf (OUTSTREAM, "/lrc {4 1 roll dup 5 2 roll dup 5 −1 roll exch");
fprintf (OUTSTREAM, " 4 2 roll 6 2 roll} bind def\n");
fprintf (OUTSTREAM, "/ulc {4 3 roll dup 5 2 roll dup 6 −1 roll exch}");
fprintf (OUTSTREAM, " bind def\n");
if (comments in postscript) {
fprintf (OUTSTREAM, "%%\n");
fprintf (OUTSTREAM, "%% Routine for drawing individual pixels\n");
fprintf (OUTSTREAM, "%%\n");

}
fprintf (OUTSTREAM, "/pixelstack {lrc 6 2 roll ulc 4 2 roll 8 4 roll");
fprintf (OUTSTREAM, " dupc 10 2 roll} bind def\n");
fprintf (OUTSTREAM, "/drawpixel {setgray pixelstack newpath moveto lineto\n");
fprintf (OUTSTREAM, " lineto lineto lineto closepath fill} bind def\n");
if (comments in postscript) {
fprintf (OUTSTREAM, "%%\n");
fprintf (OUTSTREAM, "%% The dp routine is short−hand for drawpixel\n");
fprintf (OUTSTREAM, "%%\n");

}
fprintf (OUTSTREAM, "/dp {drawpixel} bind def\n");

}
}

This code is used in section 6.

22 OPENING AND CLOSING FILES FOR DATA OUTPUT EPSIMG §24

24. Write the body of Encapsulated PostScript code.

〈Write body of Encapsulated PostScript image 24 〉 ≡
{
if (parse data sequentially) {
〈Write body of sequential Encapsulated PostScript image 25 〉

}
else {
〈Write body of partitioned Encapsulated PostScript image 26 〉

}
}

This code is used in section 6.

25. Write sequential body of Encapsulated PostScript code. The moveto sets the current starting point
of each pixel. The path of the boundary of each pixel is traversed in counter-clockwise direction, starting in
the lower left corner of each pixel. Here (llx , lly) give the (x, y)-coordinates of the lower left corner of the
pixel, while (urx , ury) give the (x, y)-coordinates of the upper right corner.

〈Write body of sequential Encapsulated PostScript image 25 〉 ≡
{
dx = ((double)(bburx − bbllx))/((double) nc);
dy = ((double)(bbury − bblly))/((double) nr);
for (j = 1; j ≤ nr ; j++) {
lly = ((double) bblly) + ((double)(j − 1)) ∗ dy ;
ury = lly + dy ∗ (1.0 + 8.0 · 10−2);
;
for (k = 1; k ≤ nc ; k++) {
llx = bbllx + ((double)(k − 1) ∗ dx);
urx = llx + dx ∗ (1.0 + 8.0 · 10−2);
if (pixel generation mode ≡ COMPACTIFIED_PIXELCODE) {
fprintf (OUTSTREAM, "%1.2f %1.2f %1.2f %1.2f %1.3f dp\n", llx , lly , urx , ury ,

imagematrix [j][k]);
}
else {
fprintf (OUTSTREAM, "%1.3f setgray\n", imagematrix [j][k]);
fprintf (OUTSTREAM, "newpath %1.2f %1.2f moveto\n", llx , lly);
fprintf (OUTSTREAM, " %1.2f %1.2f lineto", urx , lly);
fprintf (OUTSTREAM, " %1.2f %1.2f lineto\n", urx , ury);
fprintf (OUTSTREAM, " %1.2f %1.2f lineto", llx , ury);
fprintf (OUTSTREAM, " %1.2f %1.2f lineto closepath fill\n", llx , lly);

}
}

}
if (0 ≡ 1) { /∗ for debugging purposes only ∗/
for (j = 1; j ≤ nr ; j++) {
for (k = 1; k ≤ nc ; k++) {
fprintf (stdout , "%2.4f ", imagematrix [j][k]);

}
fprintf (stdout , "\n");

}
}

}

This code is used in section 24.

§26 EPSIMG OPENING AND CLOSING FILES FOR DATA OUTPUT 23

26. Write partitioned body of Encapsulated PostScript code.

〈Write body of partitioned Encapsulated PostScript image 26 〉 ≡
{
fprintf (stdout , "Not yet finished with non−sequential partitioning of data\n");
exit (−1);

}

This code is used in section 24.

27. Write the blocks ending the Encapsulated PostScript code.

〈Write closing of Encapsulated PostScript image 27 〉 ≡
{
if (write frame) { /∗ write frame corresponding to bounding box ∗/
fprintf (OUTSTREAM, "0 setgray 0 %1.2f dtransform truncate ", linethickness);
fprintf (OUTSTREAM, "idtransform setlinewidth pop\n");
fprintf (OUTSTREAM, " [] 0 setdash 1 setlinejoin 10 setmiterlimit\n");
fprintf (OUTSTREAM, "newpath %d %d moveto\n", bbllx , bblly);
fprintf (OUTSTREAM, " %d %d lineto", bburx , bblly);
fprintf (OUTSTREAM, " %d %d lineto\n", bburx , bbury);
fprintf (OUTSTREAM, " %d %d lineto", bbllx , bbury);
fprintf (OUTSTREAM, " %d %d lineto closepath stroke\n", bbllx , bblly);

}
if (write title) {
fprintf (stderr , "Still to be finished!!\n");
exit (−1);
fprintf (OUTSTREAM, "%%IncludeResource: font Helvetica\n");
fprintf (OUTSTREAM, "/Helvetica /WindowsLatin1Encoding 120 FMSR\n");
fprintf (OUTSTREAM, "2345 2372 moveto\n");
fprintf (OUTSTREAM, "(Intensity distribution in observation plane) s\n");
fprintf (OUTSTREAM, "504 2372 moveto −90 rotate\n");
fprintf (OUTSTREAM, "(y [) s\n");
fprintf (OUTSTREAM, "90 rotate\n");
fprintf (OUTSTREAM, "%%IncludeResource: font Symbol\n");
fprintf (OUTSTREAM, "/Symbol /WindowsLatin1Encoding 120 FMSR\n");
fprintf (OUTSTREAM, "504 2540 moveto −90 rotate\n");
fprintf (OUTSTREAM, "(m) s\n");
fprintf (OUTSTREAM, "90 rotate\n");
fprintf (OUTSTREAM, "504 2372 moveto −90 rotate\n");
fprintf (OUTSTREAM, "(]) s\n"); /∗ AND SO ON, IN THIS STYLE ∗/

}
fprintf (OUTSTREAM, "showpage\n");
fprintf (OUTSTREAM, "%%%%EOF\n");

}

This code is used in section 6.

28. Deallocate memory occupied by the image matrix.

〈Deallocate image matrix 28 〉 ≡
{
unload matrix (imagematrix , nr , nc);

}

This code is used in section 6.

24 OPENING AND CLOSING FILES FOR DATA OUTPUT EPSIMG §29

29. Close all open files.

〈Close files 29 〉 ≡
{
fclose (fpout);

}

This code is used in section 6.

§30 EPSIMG INDEX 25

30. Index.

argc : 6, 17.
argv : 6, 17.
A4_PAGE_HEIGHT: 6.
A4_PAGE_WIDTH: 6.
bbllx : 16, 22, 23, 25, 27.
bblly : 16, 22, 23, 25, 27.
bburx : 16, 22, 23, 25, 27.
bbury : 16, 22, 23, 25, 27.
ch : 14.
comments in postscript : 16, 17, 23.
COMPACTIFIED: 23.
COMPACTIFIED_PIXELCODE: 6, 16, 17, 23, 25.
ctime : 23.
DEFAULT_IMAGE_WIDTH: 6, 22.
DEFAULT_IMAGE_XCENTER: 6, 22.
DEFAULT_IMAGE_YCENTER: 6, 22.
DEFAULT_LINETHICKNESS: 6, 16.
dmatrix : 11, 14, 20.
dvector : 10.
dx : 16, 25.
dy : 16, 25.
EOF: 14.
exit : 10, 11, 14, 17, 19, 20, 26, 27.
EXTENSIVE_PIXELCODE: 6, 17.
FAILURE: 6, 10, 11, 14, 17, 19, 20.
fclose : 14, 29.
fopen : 14, 19.
fpin : 14.
fpout : 6, 16, 19, 29.
fprintf : 9, 10, 11, 14, 17, 19, 20, 21, 22, 23,

25, 26, 27.
free : 12, 13.
free dmatrix : 13, 15.
free dvector : 12.
fscanf : 14.
fseek : 14, 19.
getc : 14.
i: 11.
imageheight : 16, 22.
imagematrix : 16, 20, 21, 25, 28.
imagewidth : 16, 22.
imagexcenter : 16, 22.
imageycenter : 16, 22.
infile specified : 16, 17, 20.
inputfilename : 14, 16, 17, 20.
isalnum : 6, 14.
j: 14, 16.
k: 14, 16.
linethickness : 16, 27.
llx : 2, 16, 23, 25.
lly : 2, 16, 23, 25.

load matrix : 14, 15, 20.
m: 11, 13, 14, 15.
main : 6, 16.
malloc : 10, 11.
max : 14, 16, 20, 21.
MAXIMUM_IMAGE_HEIGHT: 6, 22.
MAXIMUM_IMAGE_WIDTH: 6.
min : 14, 16, 20, 21.
nc : 14, 15, 16, 20, 21, 22, 25, 28.
nch : 11, 13.
ncl : 11, 13.
ncol : 11.
nct : 14.
nh : 10, 12.
nl : 10, 12.
no arg : 16, 17.
now : 16, 23.
nr : 14, 15, 16, 20, 21, 22, 25, 28.
nrh : 11, 13.
nrl : 11, 13.
nrow : 11.
nrt : 14.
optarg : 7.
outfile specified : 6, 16, 17, 19, 23.
outputfilename : 16, 17, 19, 23.
OUTSTREAM: 6, 23, 25, 27.
parse data sequentially : 16, 17, 24.
pixel generation mode : 16, 17, 23, 25.
PIXELCODE: 23.
progname : 7, 9, 11, 14, 17, 19, 20, 21, 22.
SEEK_SET: 14, 19.
showsomehelp : 9, 20.
stderr : 9, 10, 11, 14, 17, 19, 20, 27.
stdout : 6, 17, 19, 20, 21, 22, 25, 26.
strcmp : 17.
strcpy : 17.
SUCCESS: 6.
time : 16.
tmax : 14.
tmin : 14.
tmpch : 14.
tmpd : 14.
ungetc : 14.
unload matrix : 15, 28.
urx : 2, 16, 23, 25.
ury : 2, 16, 23, 25.
v: 10, 12.
validchar : 14.
verbose : 16, 17, 19, 20, 21, 22.
VERSION_NUMBER: 6, 23.
write floatform : 16, 17.

26 INDEX EPSIMG §30

write frame : 16, 17, 27.
write title : 16, 27.

EPSIMG NAMES OF THE SECTIONS 27

〈Close files 29 〉 Used in section 6.

〈Deallocate image matrix 28 〉 Used in section 6.

〈Display help message 9 〉 Used in section 8.

〈Global variables 7 〉 Used in section 6.

〈 Initialize parameters of Encapsulated PostScript image 22 〉 Used in section 6.

〈Load text file into image matrix 20 〉 Used in section 6.

〈Local variables 16 〉 Used in section 6.

〈Normalize image matrix 21 〉 Used in section 6.

〈Open files 19 〉 Used in section 6.

〈Parse command line 17 〉 Used in section 6.

〈Routine for allocation of double matrices 11 〉 Used in section 8.

〈Routine for allocation of double vectors 10 〉 Used in section 8.

〈Routine for deallocation of double matrices 13 〉 Used in section 8.

〈Routine for deallocation of double vectors 12 〉 Used in section 8.

〈Routine for loading matrix data from text file 14 〉 Used in section 8.

〈Routine for unloading matrix data previously loaded from text file 15 〉 Used in section 8.

〈 Subroutines 8 〉 Used in section 6.

〈Write body of Encapsulated PostScript image 24 〉 Used in section 6.

〈Write body of partitioned Encapsulated PostScript image 26 〉 Used in section 24.

〈Write body of sequential Encapsulated PostScript image 25 〉 Used in section 24.

〈Write closing of Encapsulated PostScript image 27 〉 Used in section 6.

〈Write preamble of Encapsulated PostScript image 23 〉 Used in section 6.

EPSIMG

Section Page
Introduction . 1 1
Revision history of the program . 2 2
Compiling the source code . 3 4
Running the program . 4 5
Compressing the size of the generated Encapsulated Postscript . 5 6
The main program . 6 7
Declaration of global variables . 7 8
Declarations of subroutines used by the program . 8 9
Declaration of local variables of the main program . 16 14
Parsing command line options . 17 15
Opening and closing files for data output . 18 16
Index . 30 25

