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Optical parametric generation and phase matching
in magneto-optic media
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We derive the equations and main characteristics of optical parametric generation in magneto-optic media.
The key performances are discussed in terms of Stokes parameters and conservation laws of electromagnetic
linear and angular momentum.  1999 Optical Society of America
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Three-wave coherent interactions of the type v1 1 v2 �
v3 with all energy exchanges occurring among the
three field components without loss to the material
medium were analyzed previously almost exclusively
with linearly polarized light fields in linearly birefrin-
gent (anisotropic) crystals in which one could achieve
phase matching by exploiting the linear birefringence.
An alternative approach is to exploit the circular bire-
fringence, natural or artificially induced, to achieve
phase matching. This procedure has already been dis-
cussed for second- and third-harmonic generation in
the case of optically active crystals1,2 (natural optical
activity) for linearly polarized light but has had no
followup.

Here we analyze optical parametric interactions,
specifically, optical parametric generation and ampli-
fication v1 � v3 2 v2, for the case of artif icial optical
activity induced by a static magnetic field in the Fara-
day configuration3 with all three beams propagating
collinearly in the direction of the applied static mag-
netic field, chosen to be the z axis in the laboratory
reference frame �x, y, z�. The major advantage of this
configuration is that the magnetic field can be used
for continuous tuning of the phase matching in a fixed
geometry, eliminating any walk-off effects. To illus-
trate the concept we have chosen propagation in an
isotropic noncentrosymmetric medium, or along the
(111) or c axis in 43m (zinc blende) or 6mm (wurtzite)
crystalline structures, respectively, to evaluate the ef-
ficiency and characteristics of the parametric process;
the approach can be extended and applied to more
complex crystalline configurations. The simplifying
features here are that the analysis can be conducted
in terms of circularly polarized modes that are the
natural eigenmodes for these particular orientations in
the Faraday configuration and that the results can be
cast into a concise analytical form in terms of Stokes
parameters.

We assume quasi-monochromatic fields E�r, t� �P3
k�1 Re�Evk exp�2ivkt�� and keep only lowest-order

optical and magneto-optical nonlinearities; each fre-
quency component obeys the wave equation
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where k � 1, 2, 3 designate idler, signal, and pump, re-
spectively, and where the electric polarization density
for each frequency component vk is
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where
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vk

� e0x
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vk
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are the linear polarization densities and their modifi-
cations brought about by the static magnetic field,3,4

respectively, and

P �eee�
vk
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�eee�:�EE�vk ,

P �eeem�
vk
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are the nonlinear source terms that govern optical
parametric generation5 and magneto-optical paramet-
ric generation,4 respectively. �EE�vk refers to the par-
ticular combination of two electrical fields that give
rise to a field at angular frequency vk. Each suscepti-
bility tensor is to be taken with respect to the particu-
lar frequency combination that follows it.

We have chosen to analyze wave propagation in the
(111) direction of a crystal of point-symmetry class
43m, with this direction as the z axis of the laboratory
frame �x, y, z�. In the Faraday configuration, with
H0 � H0

zez, we then have that no linear direction of
polarization has preference, and the symmetry of the
combined system, crystal plus light, must be preserved
about the direction of propagation. We introduce the
circularly polarized basis e6 � �ex 6 iey ��

p
2 and

separate the electrical fields into circularly polarized
components E6

vk
� e�

6 ? Evk , where a plus denotes left-
circular polarization (LCP) and a minus denotes right-
circular polarization (RCP).

Projecting the polarization density onto the circu-
larly polarized basis P6

vk
� e�

6 ? Pvkthen gives
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with

n2
k � 1 1 x �ee�
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In terms of the susceptibility elements taken in the
crystal frame, we have x

�eee�
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3 and x
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3 �, where lowercase

(capital) lettering in subscripts denotes tensor compo-
nents taken in the laboratory (crystal) reference frame.

By using the ansatz
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with
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bk � vknk�c, ak � vkgk��2nkc�, dk � qk�pk ,

and employing the slowly varying envelope approxi-
mation, with the assumption of a nondepleted pump
A6

v3
�z� � A6

v3
�0� � constant, one obtains Eq. (1) as
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where
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In the following treatment, without loss of generality,
we assume k6A7

v3
�0� to be real. On eliminating any

explicit z dependence, by taking new variables a6
vk

such
that

a6
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from Eqs. (2) we obtain the set of decoupled equations
of evolution for the envelopes of the idler and the signal
as
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whose solutions can easily be obtained as
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We concentrate our attention on the case of optical

parametric amplification and assume a zero idler at
the input, or a6

v1
�0� � 0. The total solution for the

propagating light is conveniently expressed in terms
of Stokes parameters,6 which for the idler are taken as
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We describe the signal and the pump similarly by
pairwise replacing ��i�, v1� with ��s�, v2� and ��p�, v3�,
respectively. We also define the parameter n � h1�h2,
the gain g � �h1h2S

�p�
0 �2�1/2, and the dimensionless

propagation coordinate z � gz, normalized to the pump
intensity. With these transformations, Eqs. (3) for the
idler become
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(4d)

where ek�z � � S �k�
3 �z ��S �k�

0 �z �, k � i, s, p are the nor-
malized ellipticities of the polarization states of idler,
signal, and pump, respectively, with ek � 1 for LCP
and ek � 21 for RCP and where we have defined
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Fig. 1. Conversion efficiency n21S �i�
0 �z ��S �s�

0 versus differ-
ential phase mismatch Da�Db for a right-circularly po-
larized input pump and a left-circularly polarized signal,
ep�0� � 21, es�0� � 1, in the case with negligible magneto-
optically induced parametric generation, d1 � d2 � 0. Pa-
rameter values are z � 1 and (A), f � 0, (B) f � 0.5,
(C) f � 1, and (D) f � 4.

j2
6 � �1 6 d1� �1 6 d2� �1 7 ep�0�� ,

f6 � �1 7 Da�Db�f ,

with f � Db��2g� being the normalized phase mis-
match. In the notation above, Da�Db has the role of
a differential phase mismatch between LCP and RCP
that originates from the Faraday effect.

By direct inspection, from Eqs. (3) we have

arg�E2
v1

� 2 arg�E1
v1

� � w0 1 w1 1 w2�z � ,

where w0 � arg�E1
v2

�0�� 2 arg�E2
v2

�0�� determines the
orientation of the polarization ellipse of the input
signal and

w1 � �p�2� �sgn��1 1 d1� �1 1 d2��

2 sgn��1 2 d1� �1 2 d2�� 2 1� ,

w2�z � � g21�a3 1 a2 2 a1�z ,

where w2�z � governs the rotation of the polarization
ellipse of the idler. The above expressions completely
characterize the fields in terms of magnitude, phase,
and polarization state after interaction over a distance
z and given initial conditions for the input beams.

Certain conclusions can immediately be drawn from
Eqs. (4). The idler intensity S �i�

0 �z � varies linearly
with S �s�

0 �0� and es�0�, the input signal intensity and
ellipticity, respectively. From Eq. (4a) we obtain the
selection rule that, with a RCP (LCP) pump, the inten-
sity of the idler will be nonzero only for a signal that
has a nonzero LCP (RCP) component. In particular,
from Eq. (4d), the generated idler will then be in a pure
LCP (RCP) state, and phase matching will be obtained
for Da � Db �Da � 2Db�.

With zero magnetic field f1 � f2, and for a linearly
polarized pump ep�0� � 0, we have f1�z � � f2�z �, so the
idler intensity and the ellipticity, from Eqs. (4a) and
(4d), become independent of the signal ellipticity and
intensity, respectively.

The energy exchange rate between the beams can
be obtained from ≠W�≠t � �1�2�

P
k vk Im�E�

vk
? Pvk �,

from which Manley–Rowe-type relations can be de-
rived, ref lecting conservation of momentum (Poynt-
ing vector) and angular momentum (symmetry of
Maxwell’s electromagnetic stress tensor) of the electro-
magnetic field.7 For the classic phase-matched case
Db � 0, ref lecting conservation of photon momentum,
for global phase matching of the parametric process
considered here, one must have in addition Da � 0,
ref lecting conservation of the additional angular mo-
mentum of the electromagnetic wave imposed by the
gyrotropy.8

From solutions (4) we single out the simplif ied case
of a setup with a RCP pump and a LCP signal, for
which Fig. 1 shows the conversion eff iciency versus
differential phase mismatch Da�Db in the case
of negligible magneto-optical parametric genera-
tion. For typical parameters z � 1022 m, nk � 1,
vk�c � 107 m21, and pk � 5 3 10212 mV21, a value of
z � 1, as used in Fig. 1, hence corresponds to a pump
intensity of Ip 	 1.1 3 1010 W�m2. Interest in such a
configuration is ultimately stimulated by the possibil-
ity of using the circular birefringence induced through
the Faraday effect to compensate for the dispersion
mismatch. This circular birefringence was measured
for several materials and expressed in terms of the
Verdet constant, defined by qF � VHz

0L, where qF is
the rotation angle and L is the propagation length.
From the definition of qF � �vL�2c� �n2 2 n1�, where
n1 and n2 are the refractive indices for LCP and RCP,
respectively, one may obtain values of ak. There are,
however, neither measured nor estimated values for
the coefficients qk related to x �eeem�. By referring to
their quantum-mechanical expressions4,9 and using di-
mensionality arguments to compare with x �eee�, which
is known for several materials from second-harmonic
generation data, one obtains dk � qk�pk 	 1024

for a magnetic field of 1 T and a Verdet constant
V � 20 rad T21 m21, far away from any resonance.
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