
Reflection of focused beams from opal
photonic crystals

Karri Varis, Marco Mattila
Optoelectronics laboratory, Helsinki University of Technology, P.O. Box 3500, FIN-02015

TKK, Finland

karri.varis@tkk.fi

Sanna Arpiainen, Jouni Ahopelto
VTT Information Technology, P.O.Box 1208, 02044 VTT, Finland

Fredrik Jonsson, Clivia M Sotomayor Torres
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork,

Ireland

Marc Egen, Rudolf Zentel
Institute of Organic Chemistry, University of Mainz, Duesbergweg 10-14, D-55099 Mainz,

Germany

Abstract: We present a robust method for computing the reflection of
arbitrarily shaped and sized beams from finite thickness photonic crystals.
The method is based on dividing the incident beam into plane waves,
each of which can be solved individually using Bloch periodic boundary
conditions. This procedure allows us to take a full advantage of the crystal
symmetry and also leads to a linear scaling of the computation time with
respect to the number of plane waves needed to expand the incident beam.
The algorithm for computing the reflection of an individual plane wave
is also reviewed. Finally, we find an excellent agreement between the
computational results and measurement data obtained from opals that are
synthesized using polystyrene and poly(methyl methacrylate) microspheres.

© 2005 Optical Society of America

OCIS codes: (000.3860) Mathematical methods in physics, (000.4430) Numerical approxima-
tion and analysis, (160.5470) Polymers

References
1. K. Sakoda, Optical properties of photonic crystals (Springer-Verlag, Berlin, 2001).
2. S. W. Leonard, H. M. van Driel, A. Birner, U. Gsele, and P. R. Villeneuve, “Single-mode transmission in two-

dimensional macroporous silicon photonic crystal waveguides,” Opt. Lett. 25, 1550–1552 (2000).
3. M. Mulot, M. Swillo, M. Qiu, M. Strassner, M. Hede, and S. Anand, “Investigation of Fabry-Perot cavities based

on 2D Photonic crystals fabricated in InP membranes,” J. Appl. Phys 95, 5928–5930 (2004).
4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki,

S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394,
251–253 (1998).

5. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full Three-Dimensional Photonic Bandgap Crystals at
Near-Infrared Wavelengths,” Science 289, 604–605 (2000).

6. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case
Employing Nonspherical Atoms,” Phys. Rev. Lett. 67(17), 2295–2299 (1991).

7. K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, N. Shinya, and Y. Aoyagi, “Three-dimensional
photonic crystals for optical wavelengths assembled by micromanipulation,” Appl. Phys. Lett. 81(17), 3122–
3124 (2002).

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2653
#6617 - $15.00 US Received 17 February 2005; revised 23 March 2005; accepted 23 March 2005

mailto:karri.varis@tkk.fi


8. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-Crystal Colloidal Multilayers of Controlled
Thickness,” Chem. Mater. 11, 2131–2140 (1999).

9. F. Bresson, C.-C. Chen, G.-C. Chi, and Y.-W. Chen, “Simplified sedimentation process for 3D photonic thick
layers/bulk crystals with a stop-band in the visible range,” Appl. Surf. Sci. 217, 281–288 (2003).

10. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical Photonic Crystals Synthesized
from Colloidal Systems of Polystyrene Spheres and Nanocrystalline Titania,” J. Lightwave Technol. 17, 1970–
1974 (1999).

11. Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, “Man-
ifestation of intrinsic defects in optical properties of self-organized opal photonic crystals,” Phys. Rev. E 61,
5784–5793 (2000).

12. M. Bardosova and R. H. Tredgold, “Ordered layers of monodispersive colloids,” J. Mater. Chem. 12, 2835–2842
(2002).

13. D. J. Norris and Y. A. Vlasov, “Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals,”
Adv. Mater. 13, 371–376 (2001).

14. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods
for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001),
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.

15. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of photonic gaps in periodic dielectric structures,” Phys.
Rev. Lett. 65, 3152–3155 (1990).

16. P. R. Villeneuve and M. Pich, “Photonic bandgaps in periodic dielectric structures,” Prog. Quantum Electron. 18,
153–200 (1994).

17. S. Guo, F. Wu, and S. Albin, “Photonic band gap analysis using finite-difference frequency-domain method,”
Opt. Express 12, 1741–1746 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1741.

18. J. B. Pendry and A. MacKinnon, “Calculation of Photon Dispersion Relations,” Phys. Rev. Lett. 69, 2772–2775
(1992).

19. J. M. Elson and P. Tran, “Dispersion in photonic media and diffraction from gratings: a different modal expansion
for the R-matrix propagation technique,” J. Opt. Soc. Am. A 12, 1765–1771 (1995).

20. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J.
Phys.: Condens. Matter 4, 7389–7400 (1992).

21. L.-M. Li and Z.-Q. Zhang, “Multiple-scattering approach to finite-sized photonic band-gap materials,” Phys. Rev.
B 58, 9587–9590 (1998).

22. G. Tayeb and D. Maystre, “Rigorous theoretical study of finite-size two-dimensional photonic crystals doped my
microcavities,” J. Opt. Soc. Am. A 14, 3323–3332 (1997).

23. M. Mulot, S. Anand, M. Swillo, M. Qui, B. Jaskorzynska, and A. Talneau, “Low-loss InP-based photonic-crystal
waveguides etched with Ar/Cl2 chemically assisted ion beam ething,” J. Vac. Sci. Technol. B 21, 900–903 (2003).

24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House,
Boston, USA, 1995).

25. A. Bjarklev, W. Bogaerts, T. Felici, D. Gallagher, M. Midrio, A. Lavrinenko, D. Mogitlevt-
sev, T. Søndergaard, D. Taillaert, and B. Tromborg, “Comparison of strengths/weaknesses of exist-
ing numerical tools and outlining of modelling strategy,” A public report on Picco project (2001),
http://www.intec.rug.ac.be/picco/download/D8 report.pdf.

26. K. Varis and A. R. Baghai-Wadji, “A Novel 3D Pseudo-Spectral Analysis of Photonic Crystal Slabs,” ACES J.
19, 101–111 (2004).

27. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical
analysis of photonic band-gap materials,” Phys. Rev. B 48, 8434–8437 (1993).

28. X. Zhang, “Image resolution depending on slab thickness and object distance in a two-dimensional photonic-
crystal-based superlens,” Phys. Rev. B 70, 195,110 (2004).

29. A. R. Baghai-Wadji, “A Symbolic Procedure for the Diagonalization of Linear PDEs in Accelerated Computa-
tional Engineering,” in Lecture Notes in Computer Science, vol 2630, F. Winkler and U. Langer, eds., pp. 347–360
(Springer-Verlag, Heidelberg, Germany, 2003).

30. M. T. Manzuri-Shalmani and A. R. Baghai-Wadji, “Elemental field distributions in corrugated structures with
large-amplitude gratings,” Electron. Lett. 39, 1690–1691 (2003).

31. D. J. Norris, E. G. Arlinghaus, L. Meng, R. Heiny, and L. E. Scriven, “Opaline Photonic Crystals: How Does
Self-Assembly Work?” Adv. Mater. 16, 1393–1399 (2004).

32. Z.-Z. Gu, A. Fujishima, and O. Sato, “Fabrication of High-Quality Opal Films with Controllable Thickness,”
Chem. Mater. 14, 760–765 (2002).

33. M. Egen, R. Voss, B. Griesebock, R. Zentel, S. Romanov, and C. M. Sotomayor Torres, “Heterostructures of
Polymer Photonic Crystal Films,” Chem. Mater. 15, 3786–3792 (2003).

34. M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, “Dye-Containing Polymer Beads
as Photonic Crystals,” Chem. Mater. 12, 2508–2512 (2000).

35. F. Jonsson, C. M. Sotomayor Torres, J. Seekamp, M. Schniedergers, A. Tiedemann, J. Ye, and R. Zentel, “Artifi-
cially inscribed defects in opal photonic crystals,” Microelectr. Eng. (to appear 2005).

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2654
#6617 - $15.00 US Received 17 February 2005; revised 23 March 2005; accepted 23 March 2005

http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173
http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1741
http://www.intec.rug.ac.be/picco/download/D8


36. O. Madelung, Data in Science and Technology: Semiconductors-Group IV Elements and III-V Compounds
(Springer-Verlag, New York, 1991).

37. W. G. Spitzer and J. M. Whelan, “Infrared absorption and electron effective mass in n-type gallium arsenide,”
Phys. Rev. 114, 59–63 (1959).

38. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index
of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).

1. Introduction

Periodic dielectric microstructures, often referred to as photonic crystals, offer intriguing pos-
sibilities to control light in many novel ways [1]. In recent years, several different constructions
of two (2D) and three (3D) dimensional periodicity have been investigated [2–7] but particu-
larly promising results have been obtained by using artificial opals, in fabrication employing the
self organizing of dielectric microspheres from a suspension [8–13]. In this work, we consider
artificial opals crystallized from polystyrene (latex) and poly(methyl methacrylate) (PMMA)
microspheres.

Photonic crystals have been simulated with various methods. Photonic dispersion curves are
often solved using the plane wave method (PWM) [14–16] or the finite-difference frequency-
domain method (FDFD) [17], whereas the density of photonic states and reflection coefficients
can more readily be computed using some of the many implementations of the transfer matrix
method (TMM) [18, 19]. The layer-multiple-scattering method [20] has proven to give very
good prediction for three dimensional photonic crystals made of spherical particles, and other
multiple-scattering methods have been successfully applied on 2D crystals [21, 22]. For prob-
lems where the frequency domain methods are not easily applicable, such as in cavity problems
with leaky modes or transient phenomena, the finite-difference time-domain method (FDTD) is
often the preferred choice [23,24]. A review and comparison of existing computational methods
can be found in Ref. [25].

Our approach for solving the electromagnetic fields in finite thickness photonic crystals is
to divide the crystal slab into thin layers and expand the fields in them using plane waves. The
plane wave expansions in adjacent layers are then related to each other through a finite differ-
ence scheme in computation. Fields above and below the slab are expanded in homogeneous-
medium eigenvectors, which can be solved analytically and provides the boundary conditions
of the computational domain. Finally, a system matrix is formed by requiring the continuity
of the tangential fields on the interfaces between the three domains. Our approach has the fol-
lowing features: i) It leads to sparse matrices, which can be solved efficiently using iterative
solvers, ii) the method is very stable, iii) the dielectric function can be dispersive and complex
valued and is allowed to vary freely in all three coordinates inside the slab, and iv) the method
can be used to solve for both excitation and eigenmode problems.

Our method borrows the plane wave basis from PWM and the finite difference technique
from TMM and combines them in a way which is well suited to two-dimensionally periodic
finite thickness structures. The biggest difference to TMM is that we do not use the finite dif-
ference scheme for eliminating the field variables inside the slab, but instead include them all
explicitly into the system equation. This approach is completely free from the instabilities often
encountered in TMM [18]. The direct discretization technique of the dielectric function makes
the implementation of our method simple. This is particularly pronounced in cases where the
dielectric function cannot be divided into individual scatterers as required by the multiple-
scattering techniques, or where the scatterers are of arbitrary shape and the scattering matrices
cannot be analytically solved. In this paper, we summarize the theoretical basis of the method
and refer the reader to Ref. [26] for implementation details.

Opals are often characterized by measuring their reflection and/or transmission spectra. If
the incident field is assumed to be a plane wave, the problem can be reduced to a single unit
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cell of the photonic crystal using Bloch periodic boundary conditions. However, to relate the
calculated spectrum to the real-world experimental setups for these measurements, it is often
desirable to analyze a focused beam in which case the Bloch periodic boundary conditions can-
not be applied and the problem becomes significantly more complicated. Two approaches can
be adopted: a large portion of the crystal can be considered as one entity, which is illuminated
by the finite sized beam (see e.g. [27, 28]) or the beam may be decomposed into its plane wave
components, each of which are solved individually using Bloch periodic boundary conditions,
thus considering only one unit cell of the lattice. In this paper we adopt the latter technique and
compute the reflection from finite thickness opals using the presented computational method.
The advantages of the decomposition technique include the following: i) Instead of solving a
big problem once, one solves a small problem many times, resulting in a linear scaling of com-
putational resources, ii) after the reflection coefficients for individual plane waves have been
computed, the reflection coefficient of any arbitrary beam can be obtained with minor effort,
iii) the decomposition technique parallelizes trivially since each of the incident plane waves
creates an independent problem.

2. Computational method

2.1. Preliminary considerations and definitions

We focus on problems with the following geometry: Region 1, z < 0, is homogeneous medium
characterized by εa. Region 2, 0 ≤ z < h, is a finite thickness photonic crystal defined by
εb(r,z) = εb(r + ma1 + na2,z), where a1 and a2 are lattice vectors on xy-plane and m and n
are integers. Region 3, z ≥ h, is again homogeneous medium characterized by εc. Dielectric
functions in all three regions may be dispersive and complex valued.

In our terminology, a unit cell is defined by the two-dimensionally periodic volume defined
by the planes z = 0 and z = h and the two transverse lattice vectors a1 and a2. This should not
be confused with the unit cell of a truly three-dimensionally periodic photonic crystal, defined
by three lattice vectors. The semi-periodicity in the z-direction, as in finite thickness opals, can
be obtained simply by filling the unit cell with a semi-periodic dielectric function. The time
dependence is assumed to be harmonic f (t)∼ exp(− jωt) throughout this paper and its explicit
notation is omitted.

2.2. Diagonalized form

Maxwell’s curl equations can be written in the following form [26]:

L (∂x,∂y,ε,µ,ω)Ψ = ∂zΨ, (1)

which we refer to as being diagonalized with respect to z since all z-dependency is isolated to the
right hand side of the equation [29]. Here, Ψ = [ Ex Ey Hx Hy ]T is a vector consisting
of the transversal field components and ∂k denotes differentiation with respect to the given
coordinate k = x,y,z. L is a matrix operator

L =
[

0 A
B 0

]
, (2)

where the 2×2 sub-operator A is defined below:

A =


 ∂x ( jωε)−1 ∂y −∂x ( jωε)−1 ∂x + jωµ

∂y ( jωε)−1 ∂y − jωµ −∂y ( jωε)−1 ∂x


 . (3)
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Here, j is the imaginary unit and parameters ε and µ are the (generally) complex valued and
position dependent permittivity and permeability functions, respectively. The remaining sub-
operator B can be obtained from A by replacing ε with −µ and vice versa. The obvious
consequence of Eq. (1) is that once the transversal field distribution in some z =constant plane
is known, the derivative in the normal direction is easily evaluated and the transversal fields are
then uniquely determined everywhere in the space. The two remaining field components are
redundant and can be computed from the transversal fields a posteriori [26].

2.3. Field expansions

The periodicity on the xy-plane suggests expanding the fields in a plane wave basis

ΨK(r,z) = exp( jK · r)∑
n

Ψn(z)exp( jGn · r) , (4)

where [Gn] is a truncated set of reciprocal lattice vectors and K is a Bloch wave vector re-
stricted in the first Brillouin zone (BZ). The expansion coefficients Ψn(z) are vectors of the
z-dependent transversal field components, which will be expanded differently in the photonic
crystal medium and the claddings.

In the photonic crystal slab, we discretize the fields and material parameters on z =constant
layers and use finite differences for relating the fields in adjacent layers to each other. Substitut-
ing Eq. (4) into Eq. (1) gives the z-derivative of the transversal fields and by using the standard
first order finite difference scheme we get

ΨK (r,(i+0.5)∆) = ΨK (r,(i−0.5)∆)+∆ [L ΨK(r,z)]|z=i∆ , (5)

where ∆ is the finite difference step length and i is the index of the plane. A numerically useful
formula is obtained by multiplying both sides of Eq. (5) with exp [− j (Gm +K) · r] for each
plane wave Gm in the basis and integrating over the unit cell. The result is a matrix equation
relating the plane wave expansion coefficients in adjacent layers to each other. In the actual
implementation, we define electric fields in planes z = (i+0.5)∆ and magnetic fields in z = i∆,
for whole numbers i, since it follows from Eq. (1) that the derivative of electric field depends
only on the magnetic field and vice versa. Equation (5) is then correspondingly separated into
two parts. Fig. 1 illustrates the discretization scheme.

In the cladding regions 1 and 3, where ε is constant, we assume an exponential z-dependency:

Ψn(z) = Ψn exp( jλ z) , (6)

which allows an analytical solution for the eigenvectors and eigenvalues of Eq. (1). Principally,
there are in these regions 4N eigenvalues for a set of N plane waves (due to the four-dimensional
vector coefficients) but the system decouples into N independent eigensystems of dimension
four due to the position independent material parameters. For a given K, the complete expres-
sion for the fields is

ΨK(r,z) = exp( jK · r)∑
n

exp( jGn · r)
[(

a+
K,nΨ1+

K,n +b+
K,nΨ2+

K,n

)
exp( jwK,nz)

+
(

a−K,nΨ1−
K,n +b−K,nΨ2−

K,n

)
exp(− jwK,nz)

]
, (7)

where a±K,n and b±K,n are scalar coefficients. The two doubly degenerate eigenvalues of Eq. (1)
are

λK,n = ±wK,n = ±(
ω2εµ −|K+Gn|2

)1/2
, (8)
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Figure 1. A schematic representation of the discretization. The unit cell in the slab is limited
by planes z = 0 and z = h and is periodic with a1 and a2. Electric fields are expanded in
plane waves on light blue planes and magnetic on dark brown. The plane wave expansions
in adjacent planes are related to each other through finite differences. Outside the slab,
for z < 0 and z > h, the fields are expanded in outgoing eigenvectors. The eigenvector
expansion is used to terminate the finite difference grid by relating the electric field at
z = −(1/2)∆ to the magnetic field at z = 0 and similarly for the other cladding.

where the positive (negative) sign corresponds to a wave which either propagates or decays in
the direction of the positive (negative) z-axis. The corresponding four eigenvectors are

Ψ1±
K,n = αK,n




±wK,nωµ

0

−kxky

−k2
y +ω2εµ




, Ψ2±
K,n = βK,n




kxky

k2
y −ω2εµ

±wK,nωε

0




, (9)

where kx,y = ux,y · (K + Gn), with ux,y denoting the dimensionless unit vector in x- and y-
directions. There is a great freedom in the selection of the eigenvectors since any linear com-
bination of eigenvectors corresponding to the same eigenvalue is also an eigenvector. Our pre-
ferred choice is such that

uz ·
[
E (Ψ1±

K,n)×H (Ψ2±
K,n)

∗
]

= uz ·
[
E (Ψ2±

K,n)×H (Ψ1±
K,n)

∗
]

= 0, (10)

where E evaluates to the electric field part of the argument and H to the magnetic, uz is
the unit vector in z-direction and the asterisk denotes complex conjugation. The normalization
coefficients αK,n and βK,n are chosen such that

uz · ℜ
[
E (Ψl±

K,n)×H (Ψl±
K,n)

∗
]

=




±1, w2
K,n > 0

0, w2
K,n ≤ 0

, (11)

where l = 1,2 and ℜ denotes the real part. It should be noted that the conditions in Eqs. (10)
and (11) are only valid for real-valued material parameters.

2.4. Constructing and solving the system equation

The final step in the method is to relate the field expansions in the three domains by requiring
the continuity of the transverse field components at the interfaces. Only 2N of the total 4N
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eigenvectors are needed to satisfy the interface conditions for each cladding and we select
those which either decay or radiate energy away from the slab. The result is a homogeneous
system of equations, whose solutions correspond to guided slab modes in the photonic crystal.
Sources such as currents or incident fields can be easily included by replacing the right hand
zero vector with the source vector, to obtain an equation of the form

M(ω,K)f = b, (12)

where M is a matrix containing the eigenvectors and all the finite-difference relations in the
slab volume, f is a vector containing all the expansion coefficients for the transverse field com-
ponents and b describes the excitation.

The finite difference scheme in Eq. (5) is similar to some transfer matrix methods [18] but
there are two differences: i) We apply it directly to the plane wave expansions instead of the
real space fields and ii) we do not use it recursively for the elimination of the the field variables.
Instead we include all the field expansion coefficients throughout the slab volume explicitly as
unknowns in f. This means that if each of the four field components is expanded in terms of N
plane waves and the slab is divided into I finite difference planes, the number of elements in
f becomes 2(2I + 1)N (the electric field is expanded in one more plane than the magnetic, as
shown in Fig. 1). In 3D problems this leads to huge equations but using iterative solvers together
with efficient preconditioners [26], M never has to be constructed explicitly and the system can
be solved very efficiently. Our first approach was to create a transmission matrix by eliminating
all the field variables inside the slab using Eq. (5) recursively but we found this procedure to
be numerically unstable and inefficient due to the involved repeated matrix multiplications.
The instability is related to the presence of the complex valued propagation constants in the z-
direction [19], though not explicitly considered in the finite difference formalism. In the current
method, this instability is completely eliminated as there are no matrix multiplications and the
exponential growth and decay never accumulate.

3. Reflection of beams from periodic structures

Due to the linearity of Maxwell’s equations, the fields excited by multiple sources can be com-
puted individually and then added to give the complete field. We use this principle for super-
posing the reflection coefficients of individual plane waves to yield the reflection coefficient of
the complete beam. This way the reflection of a finite sized beam can be divided into smaller
problems, each of which can be solved by taking advantage of the crystal periodicity. A sim-
ilar approach for electrostatic problems has been taken by Manzuri-Shalmani et al. [30]. The
achieved savings depend on the computational method used for solving the individual plane
waves but most methods scale significantly worse than linearly with the number of unknowns
and the savings can therefore be considerable. Dividing the big problem into several smaller
ones also saves computer memory, which is often of concern in 3D computation. An additional
advantage is that once the reflected fields of the individual plane waves have been computed,
they can be easily combined in different ways to yield the reflection of different incident beams.

We limit ourselves to considering the reflection only as the transmission can be computed
from a very similar formula, or in the case of transparent materials, from the conservation of
energy. We will also assume that there is no absorption or gain for z > h, i.e. in the half space
of the incident and reflected beams. This is not essential to the method, but for absorptive mate-
rials, the incident and reflected intensities are z-dependent which complicates the interpretation
of the results.
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3.1. The incident and reflected fields

Consider an optical beam at a given frequency ω, propagating from z = +∞ towards the pho-
tonic crystal surface at z = h. A general expression of such a beam is given by a Fourier integral
of the eigenvectors given in Eq. (9) but in the realm of numerical computation we will sample
the wave vector and use a series representation

Ψinc(r,z) = ∑
m

exp( jKm · r− jwmz)
(
c1

mΨ1−
m + c2

mΨ2−
m

)
, (13)

where wm is the propagation constant in z-direction (the eigenvalue), corresponding to the
transversal wave vector Km, and Ψ1−

m and Ψ2−
m are the corresponding eigenvectors. The shape

and polarization of the beam are defined by the coefficients c1
m and c2

m. The difference to the
homogeneous-medium expansion as given in Eq. (7) is that the transversal wave vectors Km are
not required to be multiples of the photonic crystal reciprocal vectors and the incident beam is
not necessarily related to the lattice symmetry.

Our aim is to treat each Km as a Bloch vector of the photonic crystal lattice and compute the
reflection of each plane wave

[
exp( jKm · r− jwmz)Ψl−

m

]
, l = 1,2, individually from Eq. (12).

The results are then added to give the reflection of the complete beam. Since each of the incident
plane waves is a Bloch wave, it suffices to consider only one unit cell of the photonic crystal.
Notice that Km need not be limited to the first BZ of the photonic crystal since we can always
write it in the form Km = K′

m + Gn, where K′
m is a vector in the first BZ and Gn is a suitable

reciprocal vector.
Once the reflection of each plane wave in Eq. (13) is computed, we can write the total re-

flected field as
Ψrefl(r,z) = ∑

m
exp( jKm · r)(c1

mΘ1
m + c2

mΘ2
m

)
, (14)

where Θ1
m and Θ2

m, defined in Eq. (15), are the lattice periodic reflection functions for individual
eigenvectors Ψ1−

m and Ψ2−
m , respectively,

Θl
m = ∑

n
exp( jGn · r+ jwm,nz)

(
al+

m,nΨ1+
m,n +bl+

m,nΨ2+
m,n

)
, l = 1,2. (15)

Here, wm,n is the eigenvalue corresponding to the transversal wave vector (Km + Gn) and al+
m,n

and bl+
m,n are scalar coefficients obtained from the solution of Eq. (12). Qualitatively speaking,

summing over m means summing over different incident angles and summing over n means
summing over different Bragg orders. The wave vectors of the incident and reflected beams are
illustrated in Fig. 2.

3.2. Reflection coefficient of the beam

The reflected power is computed by integrating the time averaged Poynting vector P =
(1/2)ℜ (E×H∗) over a surface S. Taking the differential surface vector dS to be parallel to
z, the projection dS · P can be written in terms of the transversal field components and the
reflected power becomes

P =
1
2

ℜ

{∫
S

d2r ∑
m,m′

E
(
c1

mΘ1
m + c2

mΘ2
m

)×H
(
c1

m′Θ1
m′ + c2

m′Θ2
m′

)∗
exp [ j(Km −Km′) · r]

}
,

(16)
where the operators E and H have the same meaning as in Eq. (10). The reflectance is obtained
as a quotient of P and the power in the incident beam.
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Figure 2. The wave vectors of the incident and reflected fields. a) A single plane wave with
a wave vector (K0 −w0uz) is incident from the homogeneous medium (HM) to the surface
of the photonic crystal (PC) and b) its reflection is expressed in terms of the different Bragg
orders, both propagating and evanescent (not shown). c) An incident beam is decomposed
to plane waves with wave vectors [Km −wmuz] and d) the reflection is expressed in terms
of the corresponding Bragg orders.

Equation (16) can be greatly simplified if we place a few restrictions on the transversal wave
vectors Km. The aim is to select the vector set [Km] such that the harmonic basis functions
defined by vectors [Km + Gn] form an orthogonal and unique (that is, no two functions are
the same) set over some surface S. The orthogonality can be achieved if the vectors Km are
selected among the reciprocal vectors of a supercell defined by L1a1 and L2a2, where L1 and
L2 are integers and a1 and a2 are the lattice vectors of the photonic crystal. The requirement of
uniqueness is satisfied if we include only vectors which are inside the first BZ of the photonic
crystal. Then [Km] together with the reciprocal vectors of the photonic crystal [Gn] form the
set of reciprocal vectors for the supercell. These restrictions limit the beams which can be
expressed using Eq. (13). The introduction of the supercell makes the incident beam (and the
reflected field) periodic, which is usually not a problem since adjacent beams can be decoupled
by giving L1 and L2 sufficiently large values. A more fundamental restriction is the upper bound
on the length of Km, which defines a cone or a numerical aperture (NA) limiting the possible
plane waves in the incident beam. This in turn sets a lower bound on the achievable localization
on the crystal surface. Whether this is of practical concern or not, depends on the measurement
setup. In our case, the NA of the optics used for the measurement is more restrictive than the
NA originating from the limitations on Km. In any case, if these conditions are too restrictive,
the reflected power can always be evaluated directly from Eq. (16), disregarding the simplified
formula we are about to develop.

It should be noted that whenever the photonic crystal is made of completely transparent
materials, the incident beam should not contain evanescent components, i.e. one should set
c1

m = c2
m = 0 for |Km| ≥ ω(εµ)1/2. Relaxing this condition opens up a possibility that the in-

cident beam excites guided slab modes, which cannot be decoupled from each other simply by
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increasing the periodicity interval of the sources. These modes should in principle have an infi-
nite amplitude because they are excited by an infinite number of sources and they do not decay,
but in practice the amplitude is determined by numerical effects and is more or less random.
Even if guided modes are excited, it is not impossible that the reflection coefficient of inten-
sity is computed correctly, since guided modes, by definition, do not contribute to radiation.
However, we do not have a proof on this and therefore we avoid computing the reflection in the
presence of guided modes.

Having introduced the necessary restrictions, we now proceed with the simplification of
Eq. (16). Performing the surface integral over the afore mentioned supercell, the integration
of the harmonic basis functions evaluate to Kronecker delta functions with arguments (m,m′)
and (n,n′) and the double summations cancel to single summations. The numerous vector prod-
ucts can be evaluated using the properties of the eigenvectors given in Eqs. (10) and (11). After
a cumbersome but straightforward calculation we can show that the reflection coefficient of a
beam defined by the coefficients c1

m and c2
m is given by

R =
∑m

{|c1
m|2R1

m + ℜ
[
c1

m

(
c2

m

)∗
R12

m

]
+ |c2

m|2R2
m

}
∑m (|c1

m|2 + |c2
m|2)

, (17)

where the parameters R1
m, R12

m and R2
m do not depend on the coefficients c1

m and c2
m and can

therefore be calculated a priori as

Rl
m = ∑

n
δ(wm,n)

(
|al+

m,n|2 + |bl+
m,n|2

)
, l = 1,2, (18)

R12
m = 2∑

n
δ(wm,n)

[
a1+

m,n

(
a2+

m,n

)∗
+b1+

m,n

(
b2+

m,n

)∗]
. (19)

Here δ(wm,n) = 1, if the eigenvalue wm,n is real valued and 0 otherwise. The physical origin
for the appearance of δ(wm,n) is that the eigenvectors with an imaginary wave number are
evanescent and do not carry energy in a direction parallel to the z-axis.

4. PMMA opals for visible light

The crystals under investigation were self-assembled [31] in the etched areas of double side
polished 〈100〉 silicon substrates, from a 4.5 wt-% suspension of PMMA spheres in de-ionized
water, using the vertical deposition technique [32,33]. The PMMA spheres were fabricated with
a median diameter of a = 268 nm, using the modified surfactant free emulsion polymerization
technique described elsewhere [34]. The main advantage of using PMMA as medium is that
its material properties are well known and that it is commonly used also as an optical medium,
making the optical design and subsequent theoretical evaluation process straightforward. Other
advantages include its suitability for patterning with electron beam lithography [35].

Prior to the opal growth, the silicon substrates were cleaned for three hours in a 1:1 solution
of sulfuric acid (95%) and hydrogen peroxide (30%). The substrates were then hydrophilized
during three hours in a 1:1:5 agent of hydrogen peroxide (30%), ammonium hydroxide (25%),
and de-ionized water, and finally blown dry with nitrogen. The opal samples were grown at
room temperature and normal atmospheric pressure, at a vertical drawing speed of v0 = 2.6
mm/h, resulting in films of approximately 18 monolayers, or a thickness of 4.2 µm. After the
growth, the samples were sintered at 80◦ C during 90 minutes.

The optical reflectance spectra were measured using a NanoSpec III spectrophotometer
equipped with a microscope. The incident white light was supplied through a microscope ob-
jective such that the focus point was in front of the sample leading to an illumination of a
relatively large area on the surface. The reflected spectrum was measured through the same
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objective but the light was collected from a small spot and focused on a small aperture of a
spectral analyzer. Two magnifications were used in the measurements: 50x, which had a spot
size of 3 µm on the sample, numerical aperture NA=0.55 and acceptance angle 33.4◦ and 10x,
with the corresponding values being 15 µm, 0.3 and 17.5◦.

4.1. Comparison of simulations and measurements

Before presenting the results, we will make a few simplifying observations:
1) Since the incident light was unpolarized, we computed the reflectance spectrum for e- and

h-polarizations (e-polarization has electric field parallel to the sample surface and correspond-
ingly for h-polarization) separately and averaged. For a given polarization, the ratio of c1

m and
c2

m is fixed and Eq. (17) can be written in terms of a single variable cm.
2) The direction of a plane wave is determined by its wave vector components K and w such

that the angle between the z-axis and the plane wave is given by φ = tan−1 (|K|/w) and the
angle between x-axis and the plane wave by θ = tan−1(Ky/Kx), where Kx,y = ux,y ·K. It turns
out that for a sufficiently small φ, the reflectivity varies only little with θ . Particularly, at the
maximum acceptance angle of the collecting optics, φ = 33.4◦, the variation of reflectivity with
θ is at most 1.5% for any wavelength considered in the measurement. Therefore, we can take
advantage of the rotational symmetry of the incident beam and integrate Eq. (17) over θ with a
little loss in accuracy. Then it is sufficient to sample K only over a line instead of a surface, thus
reducing the computational burden significantly. The low dependence on θ can be addressed
to the high, six fold rotational symmetry of the FCC-lattice about [111]-direction (z-axis) and
low refractive index contrast between PMMA and air. However, it should be noted that if ω
is high enough to allow more than one diffraction order, then the orientation of K may indeed
have a significant effect on the reflectivity. In our samples, the second diffraction order arises
at a vacuum wavelength of 464 nm, which is outside the spectral scope of the measurements.

Incorporating the afore mentioned simplifications into Eq. (17) gives

R = ∑m 2π∆K (|Km|+0.5∆K) |cm|2Rm

∑m 2π∆K (|Km|+0.5∆K) |cm|2 , (20)

where ∆K = |Km+1−Km| is the uniformly spaced difference in the length between two consec-
utive K-vectors on the sampling line and Rm is the appropriate linear combination of R1

m, R12
m

and R2
m, defined in Eqs. (18) and (19).

Simulations were performed on a grid of 16 by 16 plane waves and 16 finite difference
planes per sphere diameter. With 18 monolayers in the sample, this results in an equation with
243200 unknowns. Solving the system once, requires typically 25 to 35 matrix iterations and
takes about 10 to 15 seconds on a standard 2 GHz PC (This claim applies to this particular
geometry, the convergence of the iterative solver depends strongly on the spatial characteristics
of the dielectric function). The spectrum was computed at 75 ω-points and K was sampled at
40 points for each value of ω. We assumed PMMA to be transparent and to possess a frequency
independent refractive index nPMMA = 1.489. The dispersive and absorptive dielectric constant
of the silicon substrate was taken according to Ref. [36]. The shape of the incident beam on the
sample was not precisely known but the optics used for collecting light had a smaller NA than
the optics used for illumination. Therefore we set cm = 1 for all plane waves that are accepted
by the collecting optics, i.e. sin(φm) <NA, and cm = 0 otherwise.

Figure 3 shows the measured reflection spectra from a typical sample and the corresponding
simulations for the two different spot sizes. For the smaller spot size (NA=0.55) the reflection
curve has gone through a considerable blue shift, the main maximum has broadened and the
fringes have leveled out. These effects are well predicted by the simulation, even up to some
very small details on the short wavelength side of the reflection peak. According to the simu-
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Figure 3. Measured and simulated reflection spectra from a typical PMMA on silicon opal.
Numerical aperture of 0.55 corresponds to 50x magnifying optics with a spot size of about
3 µm and numerical aperture 0.3 corresponds to 10x magnification and a spot size of 15
µm.

lation, the highest reflectivity should occur for the larger spot size (NA=0.3) but the opposite
is observed in the measurements. This is most likely due to defects in the crystal falling under
the larger beam. The good match between the simulation and the measurement verifies that the
crystal is of good quality and the approximations made in the simulation are valid.

5. Polystyrene opals for infrared light

The second photonic crystal structure studied in this work was fabricated by self organiza-
tion of polystyrene nano-particles using the vertical solvent evaporation technique [8], where a
substrate is placed vertically in a container partially filled with a nano-sphere dispersion. The
nano-particles form a lattice on the substrate as the solvent evaporates. A small piece (5 mm
× 20 mm) of a polished n-type gallium arsenide (GaAs) wafer was used as a substrate and the
dispersion consisted of 5 wt-% of polystyrene nano-spheres in water with an average sphere
diameter of 460 nm. The solvent evaporation temperature was 55◦C.

The structure of the photonic crystal lattice was characterized by scanning electron mi-
croscopy (SEM). A typical image from the crystal surface is shown in figure 4. Angle re-
solved reflectance spectra were measured in a goniometer setup. Light from a halogen lamp
was passed through a monochromator and slightly focused on the sample. The reflected inten-
sity was measured using standard lock-in techniques through a small aperture resulting in an
angular resolution of about 3◦.
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Figure 4. A typical SEM image of the polystyrene on GaAs opal.

5.1. Results

We measured the reflectance spectra for several values of the incident angle φ using e-polarized
light. Simulations were performed with the same resolution as in the previous section but the
incident beam was so wide (about 1 mm in diameter) and slightly focused that we assumed
a plane wave excitation. A frequency dependent and complex valued dielectric function was
used for both GaAs [37] and polystyrene [38]. Based on the measured fringe positions, as
shown in figure 5, we concluded that there are 47 monolayers in the sample. In the simulation,
we assumed the Poynting vector’s projection to lay along the Γ −M direction of the triangular
lattice on the crystal surface.

Simulations predict the positions of the reflection peak and fringes well but the difference in
amplitudes is quite pronounced. Especially, the linearly increasing trend in the reflection is not
captured by the computations at all. On the contrary, the simulated reflection has a decreasing
trend, which can be shown to be caused by the infrared absorption of polystyrene. We assume
the increasing trend to originate from a wavelength dependent scattering but the exact nature of
this process is not known to us. However, the trend is present in every sample we have prepared
(using the same batch of polystyrene spheres), even if silicon was used as a substrate material.
The details of the scattering process are a topic of our further research.

Even though the microspheres are expected to crystallize into an FCC-lattice, they may also
crystallize into a hexagonal close packed (HCP) lattice or a random mixture of the two [11]. In
an attempt to determine the crystal structure, we simulated the reflectance from a mixed lattice,
as shown in Fig. 5(d). Unfortunately, the difference between FCC and mixed lattices is so small
that the properties of the crystal cannot be established in this way.
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Figure 5. Reflection from a polystyrene on GaAs opal for different incident angles: a)
φ = 20◦, b) φ = 30◦ and c) φ = 40◦. d) The incidence angle and the measurement data is
as in c) but the simulated reflection is computed using a random mixture of FCC and HCP
lattices. Curves marked with stars are simulated and continuous lines are measured.

6. Conclusion

We presented an efficient algorithm for computing electromagnetic fields in doubly periodic,
finite thickness structures and applied it for computing reflection coefficients from opal pho-
tonic crystals. It was found that together with efficient preconditioners, our method is capable
of solving large scale three dimensional problems on a standard PC very quickly. We also used
a scheme for decomposing an arbitrary beam into plane waves and showed how to compute
the reflection coefficient of the beam by superimposing the reflection coefficients of individual
plane waves. The computation time in this scheme scales as O(NT ), where N is the number
of plane waves needed to expand the incident beam and T is the time required for solving the
Bloch periodic problem of a single plane wave.

We demonstrated the method by computing the reflection coefficient of a focused beam from
PMMA opals on silicon substrates. The match between the measurement and simulation was
found to be remarkably good, thus showing the power of our method and the high quality of
the sample.

We also studied polystyrene opals on GaAs substrates, which were found to be of lower qual-
ity. However, the reflection was measured only using a wide beam, which may explain the low
reflectance. Simulations were able to predict the positions of the reflection peak and fringes well
but the amplitude was not modeled correctly. We also found a wavelength dependent scattering
in polystyrene opals, which needs to be thoroughly investigated.

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2666
#6617 - $15.00 US Received 17 February 2005; revised 23 March 2005; accepted 23 March 2005



Acknowledgments

The authors would like to thank Prof. Ali R. Baghai-Wadji from TU Wien, Austria, for his
useful comments on using diagonalized forms for electromagnetic computations.

Funding granted by the Academy of Finland for project Nr 53942 is acknowledged.
This work has been partially funded by the EU-IST project Nr 510162 PHAT and the German

Research Society Special Programme on Photonic Crystals SP 1113.

(C) 2005 OSA 4 April 2005 / Vol. 13,  No. 7 / OPTICS EXPRESS  2667
#6617 - $15.00 US Received 17 February 2005; revised 23 March 2005; accepted 23 March 2005


