
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 11

In this lecture, we will focus on configurations where the angular frequency of the light is close to
some transition frequency of the medium. In particular, we will start with a brief outline of how
the non-resonant susceptibilities may be modified in such a way that weakly resonant interactions
can be taken into account. Having formulated the susceptibilities at weakly resonant interaction,
we will proceed with formulating a non-perturbative approach of calculation of the polarization
density of the medium. For the two-level system, this results in the Bloch equations governing
resonant interaction between light and matter.

The outline for this lecture is:
• Singularities of the non-resonant susceptibilities
• Alternatives to perturbation analysis of the polarization density
• Relaxation of the medium
• The two-level system and the Bloch equation
• The resulting polarization density of the medium at resonance

Singularities of non-resonant susceptibilities

In the theory described so far in this course, all interactions have for simplicity been considered
as non-resonant. The explicit forms of the susceptibilities, in terms of the electric dipole moments
and transition frequencies of the molecules, have been obtained in lecture six, of the forms

χ(1)
µα(−ω; ω) ∼

rµ
abr

α
ba

Ωba − ω
+ {similar terms}, [B. & C. (4.58)]

χ
(2)
µαβ(−ωσ; ω1, ω2) ∼

rµ
abr

α
bcr

β
ca

(Ωba − ω1 − ω2)(Ωca − ω2)
+ {similar terms}, [B. & C. (4.63)]

χ
(3)
µαβγ(−ωσ; ω1, ω2, ω3) ∼

rµ
abr

α
bcr

β
cdr

γ
da

(Ωba − ω1 − ω2 − ω3)(Ωca − ω2 − ω3)(Ωda − ω3)
+ {similar terms},

[B. & C. (4.64)]

...

To recapitulate, these forms have all been derived under the assumption that the Hamiltonian
(which is the general operator which describes the state of the system) consist only of a thermal
equilibrium part and an interaction part (in the electric dipolar approximation), of the form

Ĥ = Ĥ0 + ĤI(t).

This is a form which clearly does not contain any term related to relaxation effects of the medium,
that is to say, it does not contain any term describing any energy flow into thermal heat. As long
as we consider the interaction part of the Hamiltonian to be sufficiently strong compared to any
relaxation effect of the medium, this is a valid approximation.

However, the problem with the non-resonant forms of the susceptibilities clearly comes into
light when we consider an angular frequency of the light that is close to a transition frequency of
the system, since for the first order susceptibility,

χ(1)
µα(−ω; ω) → ∞, when ω → Ωba,
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or for the second order susceptibility,

χ
(2)
µαβ(−ω; ω1, ω2) → ∞, when ω1 + ω2 → Ωba or ω2 → Ωca.

This clearly non-physical behaviour is a consequence of that the denominators of the rational
expressions for the susceptibilities have singularities at the resonances, and the aim with this
lecture is to show how these singularities can be removed.

Modification of the Hamiltonian for resonant interaction

Whenever we have to consider relaxation effects of the medium, as in the case of resonant interac-
tions, the Hamiltonian should be modified to

Ĥ = Ĥ0 + ĤI(t) + ĤR, (1)

where, as previously, Ĥ0 is the Hamiltonian in the absence of external forces, ĤI(t) = −Q̂αEα(r, t)
is the interaction Hamiltonian (here taken in the Schrödinger picture, as described in lecture four),
being linear in the applied electric field of the light, and where the new term ĤR describes the
various relaxation processes that brings the system into the thermal equilibrium whenever ex-
ternal forces are absent. The state of the system (atom, molecule, or general ensemble) is then
conveniently described by the density operator formalism, from which we can obtain macroscopi-
cally observable parameters of the medium, such as the electric polarization density (as frequently
encountered in this course), the magnetization of the medium, current densities, etc.

The form (1) of the Hamiltonian is now to be analysed by means of the equation of motion of
the density operator ρ̂,

i~
dρ̂

dt
= Ĥρ̂ − ρ̂Ĥ = [Ĥ, ρ̂], (2)

and depending on the setup, this equation may be solved by means of perturbation analysis (for
non-resonant and weakly resonant interactions), or by means of non-perturbative approaches, such
as the Bloch equations (for strongly resonant interactions).

Phenomenological representation of relaxation processes

In many cases, the relaxation process of the medium towards thermal equilibrium can be described
by

[ĤR, ρ̂] = −i~Γ̂(ρ̂ − ρ̂0),

where ρ̂0 is the thermal equilibrium density operator of the system. The here phenomenologically
introduced operator Γ̂ describes the relaxation of the medium, and can can be considered as being
independent of the interaction Hamiltonian. Here the operator Γ̂ has the physical dimension of an
angular frequency, and its matrix elements can be considered as giving the time constants of decay
for various states of the system.

Perturbation analysis of weakly resonant interactions

Before entering the formalism of the Bloch equations for strongly resonant interactions, we will
outline the weakly resonant interactions in a perturbative analysis for the susceptibilities, as pre-
viously developed in lectures three, four, and five.

By taking the perturbation series for the density operator as

ρ̂(t) = ρ̂0
︸︷︷︸

∼[E(t)]0

+ ρ̂1(t)
︸ ︷︷ ︸

∼[E(t)]1

+ ρ̂2(t)
︸ ︷︷ ︸

∼[E(t)]2

+ . . . + ρ̂n(t)
︸ ︷︷ ︸

∼[E(t)]n

+ . . . ,
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as we previously did for the strictly non-resonant case, one obtains the system of equations

i~
dρ̂0

dt
= [Ĥ0, ρ̂0],

i~
dρ̂1(t)

dt
= [Ĥ0, ρ̂1(t)] + [ĤI(t), ρ̂0] − i~Γ̂ρ̂1(t),

i~
dρ̂2(t)

dt
= [Ĥ0, ρ̂2(t)] + [ĤI(t), ρ̂1(t)] − i~Γ̂ρ̂2(t),

...

i~
dρ̂n(t)

dt
= [Ĥ0, ρ̂n(t)] + [ĤI(t), ρ̂n−1(t)] − i~Γ̂ρ̂n(t),

...

As in the non-resonant case, one may here start with solving for the zeroth order term ρ̂0, with all
other terms obtained by consecutively solving the equations of order j = 1, 2, . . . , n, in that order.

Proceeding in exactly the same path as for the non-resonant case, solving for the density
operator in the interaction picture and expressing the various terms of the electric polarization
density in terms of the corresponding traces

Pµ(r, t) =

∞∑

n=0

P (n)
µ (r, t) =

1

V

∞∑

n=0

Tr[ρ̂n(t)Q̂µ],

one obtains the linear, first order susceptibility of the form

χ(1)
µα(−ω; ω) =

Ne2

ε0~

∑

a

̺0(a)
∑

b

( rµ
abr

α
ba

Ωba − ω − iΓba

+
rα
abr

µ
ba

Ωba + ω − iΓba

)

.

Similarly, the second order susceptibility for weakly resonant interaction is obtained as

χ
(2)
µαβ(−ωσ; ω1, ω2)

=
Ne3

ε0~2

1

2!
S

∑

a

̺0(a)
∑

b

∑

c

{ rµ
abr

α
bcr

β
ca

(Ωac + ω2 − iΓac)(Ωab + ωσ − iΓab)

−
rα
abr

µ
bcr

β
ca

(Ωac + ω2 − iΓac)(Ωbc + ωσ − iΓbc)
−

rβ
abr

µ
bcr

α
ca

(Ωba + ω2 − iΓba)(Ωbc + ωσ − iΓbc)

+
rβ
abr

α
bcr

µ
ca

(Ωba + ω2 − iΓba)(Ωca + ωσ − iΓca)

}

.

In these expressions for the susceptibilities, the singularities at resonance are removed, and the
spectral properties of the absolute values of the susceptibilities are described by regular Lorenzian
line shapes.

The values of the matrix elements Γmn are in many cases difficult to derive from a theoretical
basis; however, they are often straightforward to obtain by regular curve-fitting and regression
analysis of experimental data.

As seen from the expressions for the susceptibilities above, we still have a boosting of them close
to resonance (resonant enhancement). However, the values of the susceptibilities reach a plateau
at exact resonance, with maximum values determined by the magnitudes of the involved matrix
elements Γmn of the relaxation operator.
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Validity of perturbation analysis of the polarization density

Strictly speaking, the perturbative approach is only to be considered as for an infinite series
expansion. For a limited number of terms, the perturbative approach is only an approximative
method, which though for many cases is sufficient.

The perturbation series, in the form that we have encountered it in this course, defines a power
series in the applied electric field of the light, and as long as the lower order terms are dominant in
the expansion, we may safely neglect the higher order ones. Whenever we encounter strong fields,
however, we may run into trouble with the series expansion, in particular if we are in a resonant
optical regime, with a boosting effect of the polarization density of the medium. (This boosting
effect can be seen as the equivalent to the close-to-resonance behaviour of the mechanical spring
model under influence of externally driving forces.)

As an illustration to this source of failure of the model in the presence of strong electrical fields,
we may consider another, more simple example of series expansions, namely the Taylor expansion
of the function sin(x) around x ≈ 0, as shown in Fig. 1.

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

 f(
x)

 f(x) = p
3
(x)

 f(x) = p
5
(x)

 f(x) = p
7
(x)

 f(x) = sin(x)

Figure 1. Approximations to f(x) = sin(x) by means of power series expansions of various degrees.

In analogy to the susceptibility formalism, we may consider x to have the role of the electric
field (the variable which we make the power expansion in terms of), and sin(x) to have the role of
the polarization density or the density operator (simply the function we wish to analyze). For low
numerical values of x, up to about x ≈ 1, the sin(x) function is well described by keeping only the
first two terms of the expansion, corresponding to a power expansion up to and including order
three,

sin(x) ≈ p3(x) = x −
x3

3!
.

For higher values of x, say up to about x ≈ 2, the expansion is still following the exact function to
a good approximation if we include also the third term, corresponding to a power expansion up to
and including order five,

sin(x) ≈ p5(x) = x −
x3

3!
+

x5

5!
.

This necessity of including higher and higher order terms goes on as we increase the value of x,
and we can from the graph also see that the breakdown at a certain level of approximation causes
severe difference between the approximate and exact curves. In particular, if one wish to calculate
the value of the function sin(x) for small x, it might be a good idea to apply the series expansion.
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For greater values of x, say x ≈ 10, the series expansion approach is, however, a bad idea, and an
efficient evaluation of sin(x) requires another approach.

As a matter of fact, the same arguments hold for the more complex case of the series expansion
of the density operator1, for which we for high intensities (high electrical field strengths) must
include higher order terms as well.

However, we have seen that even in the non-resonant case, we may encounter great algebraic
complexity even in low order nonlinear terms, and since the problem of formulating a proper
polarization density is expanding more or less exponentially with the order of the nonlinearity, the
usefulness of the susceptibility formalism eventually breaks down. The solution to this problem is
to identify the relevant transitions of the ensemble, and to solve the equation of motion (2) exactly
instead (or at least within other levels of approximation which do not rely on the perturbative
foundation of the susceptibility formalism).

The two-level system

In many cases, the interaction between light and matter can be reduced to that of a two-level
system, consisting of only two energy eigenstates |a〉 and |b〉. The equation of motion of the
density operator is generally given by Eq. (2) as

i~
dρ̂

dt
= [Ĥ, ρ̂],

with

Ĥ = Ĥ0 + ĤI(t) + ĤR.

For the two-level system, the equation of motion can be expressed in terms of the matrix elements
of the density operator as

i~
dρaa

dt
= [Ĥ0, ρ̂]aa + [ĤI(t), ρ̂]aa + [ĤR, ρ̂]aa, (3a)

i~
dρab

dt
= [Ĥ0, ρ̂]ab + [ĤI(t), ρ̂]ab + [ĤR, ρ̂]ab, (3b)

i~
dρbb

dt
= [Ĥ0, ρ̂]bb + [ĤI(t), ρ̂]bb + [ĤR, ρ̂]bb, (3c)

where the fourth equation for ρba was omitted, since the solution for this element immediately
follows from

ρba = ρ∗ab.

Terms involving the thermal equilibrium Hamiltonian

The system of Eqs. (3) is the starting point for derivation of the so-called Bloch equations. Starting
with the thermal-equilibrium part of the commutators in the right-hand sides of Eqs. (3), we have
for the diagonal elements

[Ĥ0, ρ̂]aa = 〈a|Ĥ0ρ̂|a〉 − 〈a|ρ̂Ĥ0|a〉

=
∑

k

〈a|Ĥ0|k〉
︸ ︷︷ ︸

=Eaδak

〈k|ρ̂|a〉 −
∑

j

〈a|ρ̂|j〉 〈j|Ĥ0|a〉
︸ ︷︷ ︸

=Ejδja

= Eaρaa − ρaaEa

= 0

= [Ĥ0, ρ̂]bb,

1 We may recall that the series expansion of the density operator is the very origin of the expansion
of the polarization density of the medium in terms of the electric field, and hence also the very
foundation for the whole susceptibility formalism as described in this course.
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and for the off-diagonal elements

[Ĥ0, ρ̂]ab = 〈a|Ĥ0ρ̂|b〉 − 〈a|ρ̂Ĥ0|b〉

=
∑

k

〈a|Ĥ0|k〉
︸ ︷︷ ︸

=Eaδak

〈k|ρ̂|b〉 −
∑

j

〈a|ρ̂|j〉 〈j|Ĥ0|b〉
︸ ︷︷ ︸

=Ejδjb

= Eaρab − ρabEb

= −(Eb − Ea)ρab

= −~Ωbaρab

Terms involving the interaction Hamiltonian

For the commutators in the right-hand sides of Eqs. (3) involving the interaction Hamiltonian, we
similarly have for the diagonal elements

[ĤI(t), ρ̂]aa = 〈a|(−er̂αEα(r, t))ρ̂|a〉 − 〈a|ρ̂(−er̂αEα(r, t))|a〉

= −eEα(r, t)

{
∑

k

〈a|r̂α|k〉〈k|ρ̂|a〉 −
∑

j

〈a|ρ̂|j〉〈j|r̂α|a〉

}

= −eEα(r, t)

{

rα
aaρaa + rα

abρba − ρaarα
aa − ρabr

α
ba

}

= −e(rα
abρba − rα

baρab)Eα(r, t)

= −[ĤI(t), ρ̂]bb,

and for the off-diagonal elements

[ĤI(t), ρ̂]ab = 〈a|(−er̂αEα(r, t))ρ̂|b〉 − 〈a|ρ̂(−er̂αEα(r, t))|b〉

= −eEα(r, t)

{
∑

k

〈a|r̂α|k〉〈k|ρ̂|b〉 −
∑

j

〈a|ρ̂|j〉〈j|r̂α|b〉

}

= −eEα(r, t)

{

rα
aaρab + rα

abρbb − ρaarα
ab − ρabr

α
bb

}

= −erα
abEα(r, t)(ρbb − ρaa) − e(rα

aa − rα
bb)Eα(r, t)ρab

= {Optical Stark shift : δEk ≡ −erα
kkEα(r, t), k = a, b}

= −erα
abEα(r, t)(ρbb − ρaa) + (δEa − δEb)ρab.

Terms involving relaxation processes

For the commutators describing relaxation processes, the diagonal elements are given as

[ĤR, ρ̂]aa = −i~(ρaa − ρ0(a))/Ta,

[ĤR, ρ̂]bb = −i~(ρbb − ρ0(b))/Tb,

where Ta and Tb are the decay rates towards the thermal equilibrium at respective level, and where
ρ0(a) and ρ0(b) are the thermal equilibrium values of ρaa and ρbb, respectively (i. e. the thermal
equilibrium population densities of the respective level). The off-diagonal elements are similarly
given as

[ĤR, ρ̂]ab = −i~ρab/T2,

[ĤR, ρ̂]ba = −i~ρba/T2.

A common approximation is to consider the two states |a〉 and |b〉 to be sufficiently similar in
order to approximate their lifetimes as equal, i. e. Ta ≈ Tb ≈ T1, where T1 for historical reasons
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is denoted as the longitudinal relaxation time. For the same historical reason, the relaxation time
T2 is denoted as the transverse relaxation time.2

As the above matrix elements of the commutators involving the various terms of the Hamilto-
nian are inserted into the right-hand sides of Eqs. (3), one obtains the following system of equations
for the matrix elements of the density operator,

i~
dρaa

dt
= −e(rα

abρba − rα
baρab)Eα(r, t) − i~(ρaa − ρ0(a))/Ta, (4a)

i~
dρab

dt
= −~Ωbaρab − erα

abEα(r, t)(ρbb − ρaa) + (δEa − δEb)ρab − i~ρab/T2, (4b)

i~
dρbb

dt
= e(rα

abρba − rα
baρab)Eα(r, t) − i~(ρbb − ρ0(b))/Tb. (4c)

(The system of equations (4) corresponds to Butcher and Cotter’s Eqs. (6.35).) So far, the applied
electric field of the light is allowed to be of arbitrary form. However, in order to simplify the
following analysis, we will assume the light to be linearly polarized and quasimonochromatic, of
the form

Eα(r, t) = Re[Eα
ω(t) exp(−iωt)].

We will in addition assume the slowly varying temporal envelope Eα
ω (t) to be real-valued, and we

will also neglect the optical Stark shifts δEa and δEb. In the absence of strong static magnetic
fields, we may also assume the matrix elements erα

ab to be real-valued. When these assumptions
and approximations are applied to the equations of motion (4), one obtains

dρaa

dt
= i(ρba − ρab)β(t) cos(ωt) − (ρaa − ρ0(a))/Ta, (5a)

dρab

dt
= iΩbaρab + iβ(t) cos(ωt)(ρbb − ρaa) − ρab/T2, (5b)

dρbb

dt
= −i(ρba − ρab)β(t) cos(ωt) − (ρbb − ρ0(b))/Tb, (5c)

where the Rabi frequency β(t), defined in terms of the spatial envelope of the electrical field and
the transition dipole moment as

β(t) = erα
abE

α
ω(t)/~ = erab · Eω(t)/~,

was introduced.

The rotating-wave approximation

In the middle equation of the system (5), we have a time-derivative of ρab in the left-hand side,
while we in the right-hand side have a term iΩbaρab. Seen as the homogeneous part of a linear
differential equation, this suggests that we may further simplify the equations of motion by taking
a new variable ρΩ

ab according to the variable substitution

ρab = ρΩ
ab exp[i(Ωba − ∆)t], (6)

where ∆ ≡ Ωba − ω is the detuning of the angular frequency of the light from the transition
frequency Ωba ≡ (Eb − Ea)/~.

2 For a deeper discusssion and explanation of the various mechanisms involved in relaxation,
see for example Charles P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin,
1978), available at KTHB. This reference is not mentioned in Butcher and Cotters book, but it is
a very good text on relaxation phenomena and how to incorporate them into a density-functional
description of interaction between light and matter.
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By inserting Eq. (6) into Eqs. (5), keeping in mind that ρba = ρ∗ab, one obtains the system

dρaa

dt
= i(ρΩ

ba exp[−i(Ωba − ∆)t] − ρΩ
ab exp[i(Ωba − ∆)t])β(t) cos(ωt) − (ρaa − ρ0(a))/Ta, (6a)

dρΩ
ab

dt
= i∆ρΩ

ab + iβ(t) cos(ωt) exp[−i(Ωba − ∆)t](ρbb − ρaa) − ρΩ
ab/T2, (6b)

dρbb

dt
= −i(ρΩ

ba exp[−i(Ωba − ∆)t] − ρΩ
ab exp[i(Ωba − ∆)t])β(t) cos(ωt) − (ρbb − ρ0(b))/Tb, (6c)

The idea with the rotating-wave approximation is now to separate out rapidly oscillating terms of
angular frequencies ω + Ωba and −(ω + Ωba), and neglect these terms, compared with more slowly
varying terms. The motivation for this approximation is that whenever high-frequency components
appear in the equations of motions, the high-frequency terms will when integrated contain large
denominators, and will hence be minor in comparison with terms with a slow variation. In some
sense we can also see this as a temporal averaging procedure, where rapidly oscillating terms
average to zero rapidly compared to slowly varying (or constant) components.

For example, in Eq. (6b), the product of the cos(ωt) and the exponential function is approxi-
mated as

cos(ωt) exp[−i(Ωba − ∆)t] =
1

2
[exp(iωt) + exp(−iωt)] exp[−i (Ωba − ∆)

︸ ︷︷ ︸

=ω

t]

=
1

2
[1 + exp(−i2ωt)] →

1

2
,

while in Eqs. (6a) and (6c), the same argument gives

exp[i(Ωba − ∆)t] cos(ωt) =
1

2
[exp(iωt) + exp(−iωt)] exp[−i (Ωba − ∆)

︸ ︷︷ ︸

=ω

t]

=
1

2
[exp(i2ωt) + 1] →

1

2
.

By applying this rotating-wave approximation, the equations of motion (6) hence take the form

dρaa

dt
=

i

2
(ρΩ

ba − ρΩ
ab)β(t) − (ρaa − ρ0(a))/Ta, (7a)

dρΩ
ab

dt
= i∆ρΩ

ab +
i

2
β(t)(ρbb − ρaa) − ρΩ

ab/T2, (7b)

dρbb

dt
= −

i

2
(ρΩ

ba − ρΩ
ab)β(t) − (ρbb − ρ0(b))/Tb. (7c)

In this final form, before entering the Bloch vector description of the interaction, these equations
correspond to Butcher and Cotter’s Eqs. (6.41).

The Bloch equations

Assuming the two states |a〉 and |b〉 to be sufficiently similar in order to approximate Ta ≈ Tb ≈ T1,
where T1 is the longitudinal relaxation time, and by taking new variables (u, v, w) according to

u = ρΩ
ba + ρΩ

ab,

v = i(ρΩ
ba − ρΩ

ab),

w = ρbb − ρaa,

the equations of motion (7) are cast in the Bloch equations

du

dt
= −∆v − u/T2, (8a)

dv

dt
= ∆u + β(t)w − v/T2, (8b)

dw

dt
= −β(t)v − (w − w0)/T1. (8c)
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In these equations, the introduced variable w describes the population inversion of the two-level
system, while u and v are related to the dispersive and absorptive components of the polarization
density of the medium. In the Bloch equations above, w0 = ρ0(b)−ρ0(a) is the thermal equilibrium
inversion of the system with no optical field applied.

The resulting electric polarization density of the medium

The so far developed theory of the density matrix under resonant interaction can now be applied
to the calculation of the electric polarization density of the medium, consisting of N identical
molecules per unit volume, as

Pµ(r, t) = N〈er̂µ〉

= N Tr[ρ̂er̂µ]

= N
∑

k=a,b

〈k|ρ̂er̂µ|k〉

= N
∑

k=a,b

∑

j=a,b

〈k|ρ̂|j〉〈j|er̂µ|k〉

= N
∑

k=a,b

{〈k|ρ̂|a〉〈a|er̂µ|k〉 + 〈k|ρ̂|b〉〈b|er̂µ|k〉}

= N {〈a|ρ̂|a〉〈a|er̂µ|a〉 + 〈b|ρ̂|a〉〈a|er̂µ|b〉 + 〈a|ρ̂|b〉〈b|er̂µ|a〉 + 〈b|ρ̂|b〉〈b|er̂µ|b〉}

= N(ρbaerµ
ab + ρaber

µ
ba)

= {Make use of ρab = (u + iv) exp(iωt) = ρ∗ba}

= N [(u − iv) exp(−iωt)erµ
ab + (u + iv) exp(iωt)erµ

ba].

The temporal envelope Pµ
ω of the polarization density, throughout this course as well as in Butcher

and Cotter’s book, is taken as

Pµ(r, t) = Re[Pµ
ω exp(−iωt)],

and by identifying this expression with the right-hand side of the result above, we hence finally
have obtained the polarization density in terms of the Bloch parameters (u, v, w) as

Pµ
ω (r, t) = Nerµ

ab(u − iv).

This expression for the temporal envelope of the polarization density is exactly in the same mode
of description as the one as previously used in the susceptibility theory, as in the wave equations
developed in lecture eight. The only difference is that now we instead consider the polarization
density as given by a non-perturbative analysis. Taken together with the Maxwell’s equations (or
the proper wave equation for the envelopes of the fields), the Bloch equations are known as the
Maxwell–Bloch equations.
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