
Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 9

In this lecture, we will focus on examples of electromagnetic wave propagation in nonlinear optical
media, by applying the forms of Maxwell’s equations as obtained in the eighth lecture to a set of
particular nonlinear interactions as described by the previously formulated nonlinear susceptibility
formalism.

The outline for this lecture is:
• General process for solving problems in nonlinear optics
• Second harmonic generation (SHG)
• Optical Kerr-effect

General process for solving problems in nonlinear optics

The typical steps in the process of solving a theoretical problem in nonlinear optics typically
involve: {

define the optical interaction of interest
(identifying the susceptibility)

}

⇓
{

define in which medium the interaction take place
(identify crystallographic point symmetry group)

}

⇓
{

consider eventual additional symmetries and constraints
(e. g. intrinsic, overall, or Kleinman symmetries)

}

⇓
{

construct the polarization density
(the Butcher and Cotter convention)

}

⇓
{

formulate the proper wave equation
(e. g. taking dispersion or diffraction into account)

}

⇓
{

formulate the proper boundary
conditions for the wave equation

}

⇓
{

solve the wave equation under
the boundary conditions

}
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Formulation of the exercises in this lecture

In order to illustrate the scheme as previously outlined, the following exercises serve as to give
the connection between the susceptibilities, as extensively analysed from a quantum-mechanical
basis in earlier lectures of this course, and the wave equation, derived from Maxwell’s equations of
motion for electromagnetic fields.

Exercise 1. (Second harmonic generation in negative uniaxial media) Consider a continuous pump
wave at angular frequency ω, initially polarized in the y-direction and propagating in the positive
x-direction of a negative uniaxial crystal of crystallographic point symmetry group 3m. (Examples
of crystals belonging to this class: beta-BaB2O4/BBO, LiNbO3.)

1a. Formulate the polarization density of the medium for the pump and second harmonic wave.
1b. Formulate the system of equations of motion for the electromagnetic fields.
1c. Assuming no second harmonic signal present at the input, solve the equations of motion for

the second harmonic field, using the non-depleted pump approximation, and derive an expression
for the conversion efficiency of the second harmonic generation.

Exercise 2. (Optical Kerr-effect – continuous wave case) In this setup, a monochromatic optical
wave is propagating in the positive z-direction of an isotropic optical Kerr-medium.

2a. Formulate the polarization density of the medium for a wave polarized in the xy-plane.
2b. Formulate the polarization density of the medium for a wave polarized in the x-direction.
2c. Formulate the wave equation for continuous wave propagation in optical Kerr-media. The

continuous wave is x-polarized and propagates in the positive z-direction.
2d. For lossless media, solve the wave equation and give an expression for the nonlinear,

intensity-dependent refractive index n = n0 + n2|Eω|
2.
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Second harmonic generation

The optical interaction

In the case of second harmonic generation (SHG), two photons at angular frequency ω combine to
a photon at twice the angular frequency,

~ω + ~ω → ~(2ω).

This interaction is for the second harmonic wave (at angular frequency ω)described by the second
order susceptibility

χ
(2)
µαβ(−ωσ; ω, ω),

where ωσ = 2ω is the generated second harmonic frequency of the light.

Symmetries of the medium

In this example we consider second harmonic generation in trigonal media of crystallographic point
symmetry group 3m. (Example: LiNbO3)

y

x

z Crystal frame (x, y, z)

point symmetry group 3m

(e. g. LiNbO3)

EI(r, t) = Re[Eω exp(−iωt)]
= eyRe[Ey

ω exp(−iωt)]

ET(r, t) = Re[Eω exp(−iωt)] + Re[E2ω exp(−i2ωt)]

Figure 1. The setup for optical second harmonic generation in LiNbO3.

For this point symmetry group, the nonzero tensor elements of the first order susceptibility are
(for example according to Table A3.1 in The Elements of Nonlinear Optics)

χ(1)
xx = χ(1)

yy , χ(1)
zz ,

which gives the ordinary refractive indices

nx(ω) = ny(ω) = [1 + χ(1)
xx (−ω; ω)]1/2 ≡ nO(ω)

for waves components polarized in the x- or y-directions, and the extraordinary refractive index

nz(ω) = [1 + χ(1)
zz (−ω; ω)]1/2 ≡ nE(ω)

for the wave component polarized in the z-direction. Since we here are considering a negatively
uniaxial crystal (see Butcher and Cotter, p. 214), these refractive indices satisfy the inequality

nE(ω) ≤ nO(ω).

The nonzero tensor elements of the second order susceptibility are (for example according to
Table A3.2 in The Elements of Nonlinear Optics)

χ(2)
yxx = χ(2)

xyx = χ(2)
xxy = −χ(2)

yyy, χ(2)
zzz,

χ(2)
zxx = χ(2)

zyy, χ(2)
yyz = χ(2)

xxz, χ(2)
yzy = χ(2)

xzx,
(1)
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Additional symmetries

Intrinsic permutation symmetry for the case of second harmonic generation gives

χ(2)
xxz(−2ω; ω, ω) = χ(2)

xzx(−2ω; ω, ω) = χ(2)
yzy(−2ω; ω, ω) = χ(2)

yyz(−2ω; ω, ω),

which reduces the second order susceptibility in Eq. (1) to a set of 11 tensor elements, of which only
4 are independent. (We recall that the intrinsic permutation symmetry is always applicable, as
being a consequence of the symmetrization described in lectures two and five.) Whenever Kleinman
symmetry holds, the susceptibility is in addition symmetric under any permutation of the indices,
which hence gives the additional relation

χ(2)
zxx(−2ω; ω, ω) = χ(2)

xzx(−2ω; ω, ω) = χ(2)
xxz(−2ω; ω, ω),

i. e. reducing the second order susceptibility to a set of 11 tensor elements, of which only 3 are
independent.

To summarize, the set of nonzero tensor elements describing second harmonic generation under
Kleinman symmetry is

χ(2)
yxx = χ(2)

xyx = χ(2)
xxy = −χ(2)

yyy, χ(2)
zzz,

χ(2)
zxx = χ(2)

zyy = χ(2)
yyz = χ(2)

xxz = χ(2)
yzy = χ(2)

xzx.
(2)

For the pump field at angular frequency ω, the relevant susceptibility describing the interaction
with the second harmonic wave is1

χ
(2)
µαβ(−ω; 2ω,−ω).

For an arbitrary frequency argument, this is the proper form of the susceptibility to use for the
fundamental field, and this form generally differ from that of the susceptibilities for the second har-
monic field. However, whenever Kleinman symmetry holds, the susceptibility for the fundamental
field can be cast into the same parameters as for the second harmonic field, since

χ
(2)
µαβ(−ω; 2ω,−ω) =

{
Apply overall permutation symmetry

}

= χ
(2)
αµβ(2ω;−ω,−ω)

=
{
Apply Kleinman symmetry

}

= χ
(2)
µαβ(2ω;−ω,−ω)

=
{
Apply reality condition [B. &C. Eq. (2.43)]

}

= [χ
(2)
µαβ(−2ω; ω, ω)]∗

= χ
(2)
µαβ(−2ω; ω, ω).

Hence the second order interaction is described by the same set of tensor elements for the funda-
mental as well as the second harmonic optical wave whenever Kleinman symmetry applies.

1 Keep in mind that in the convention of Butcher and Cotter, the frequency arguments to the
right of the semicolon may be writen in arbitrary order, hence we may in an equal description
instead use

χ(2)
xxz(−ω;−ω, 2ω)

for the description of the second order interaction between light and matter.
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The polarization density

Following the convention of Butcher and Cotter,2 the degeneracy factor for the second harmonic
signal at 2ω is

K(−2ω; ω, ω) = 2l+m−np,

where
p = {the number of distinct permutations of ω, ω} = 1,

n = {the order of the nonlinearity} = 2,

m = {the number of angular frequencies ωk that are zero} = 0,

l =

{
1, if 2ω 6= 0,
0, otherwise.

}

= 1,

i. e.

K(−2ω; ω, ω) = 21+0−2 × 1 = 1/2.

For the fundamental optical field at ω, one might be mislead to assume that since the second
order interaction for this field is described by an identical set of tensor elements as for the second
harmonic wave, the degeneracy factor must also be identical to the previously derived one. This
is, however, a very wrong assumption, and one can easily verify that the proper degeneracy factor
for the fundamental field instead is given as

K(−ω; 2ω,−ω) = 2l+m−np,

where
p = {the number of distinct permutations of 2ω,−ω} = 2,

n = {the order of the nonlinearity} = 2,

m = {the number of angular frequencies ωk that are zero} = 0,

l =

{
1, if ω 6= 0,
0, otherwise.

}

= 1,

i. e.

K(−ω; 2ω,−ω) = 21+0−2 × 2 = 1.

The general second harmonic polarization density of the medium is hence given as

[P
(NL)
2ω ]z = [P

(2)
2ω ]z = ε0 K(−2ω; ω, ω)χ

(2)
zαβ(−2ω; ω, ω)

︸ ︷︷ ︸

= 1
2 χ

(2)

zαβ
(−2ω;ω,ω)

Eα
ωEβ

ω

= (ε0/2)[χ(2)
zxxEx

ωEx
ω + χ(2)

zyyEy
ωEy

ω + χ(2)
zzzE

z
ωEz

ω]

= (ε0/2)[χ(2)
zxx(Ex

ωEx
ω + Ey

ωEy
ω) + χ(2)

zzzE
z
ωEz

ω],

[P
(NL)
2ω ]y = (ε0/2)[χ(2)

yxxEx
ωEx

ω + χ(2)
yyyEy

ωEy
ω + χ(2)

yyzE
y
ωEz

ω + χ(2)
yzyEz

ωEy
ω]

= (ε0/2)[χ(2)
yxx(Ex

ωEx
ω − Ey

ωEy
ω) + χ(2)

zxx(Ey
ωEz

ω + Ez
ωEy

ω)],

[P
(NL)
2ω ]x = (ε0/2)[χ(2)

xxyEx
ωEy

ω + χ(2)
xyxEy

ωEx
ω + χ(2)

xxzE
x
ωEz

ω + χ(2)
xzxEz

ωEx
ω]

= (ε0/2)[χ(2)
yxx(Ex

ωEy
ω + Ey

ωEx
ω) + χ(2)

zxx(Ex
ωEz

ω + Ez
ωEx

ω)],

2 See course material on the Butcher and Cotter convention handed out during the third lecture.
Notice that for the first order polarization density, one at optical frequencies always has the trivial
degeneracy factor

K(−2ω; ω) = 2l+m−np = 21+0−1 × 1 = 1.
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while the general polarization density at the angular frequency of the pump field becomes3

[P(NL)
ω ]z = [P(2)

ω ]z = ε0 K(−ω; 2ω,−ω)χ
(2)
zαβ(−ω; 2ω,−ω)

︸ ︷︷ ︸

=χ
(2)

zαβ
(−2ω;ω,ω)

Eα
2ωEβ

−ω

= ε0[χ
(2)
zxxEx

2ωEx∗
ω + χ(2)

zyyEy
2ωEy∗

ω + χ(2)
zzzE

z
2ωEz∗

ω ]

= ε0[χ
(2)
zxx(Ex

2ωEx∗
ω + Ey

2ωEy∗
ω ) + χ(2)

zzzE
z
2ωEz∗

ω ],

[P(NL)
ω ]y = ε0[χ

(2)
yxxEx

2ωEx∗
ω + χ(2)

yyyEy
2ωEy∗

ω + χ(2)
yyzE

y
2ωEz∗

ω + χ(2)
yzyEz

2ωEy∗
ω ]

= ε0[χ
(2)
yxx(Ex

2ωEx∗
ω − Ey

2ωEy∗
ω ) + χ(2)

zxx(Ey
2ωEz∗

ω + Ez
2ωEy∗

ω )],

[P(NL)
ω ]x = ε0[χ

(2)
xxyEx

2ωEy∗
ω + χ(2)

xyxEy
2ωEx∗

ω + χ(2)
xxzE

x
2ωEz∗

ω + χ(2)
xzxEz

2ωEx∗
ω ]

= ε0[χ
(2)
yxx(Ex

2ωEy∗
ω + Ey

2ωEx∗
ω ) + χ(2)

zxx(Ex
2ωEz∗

ω + Ez
2ωEx∗

ω )].

For a pump wave polarized in the yz-plane of the crystal frame, the polarization density of the
medium hence becomes

[P
(NL)
2ω ]z = (ε0/2)[χ(2)

zxxEy
ωEy

ω + χ(2)
zzzE

z
ωEz

ω],

[P
(NL)
2ω ]y = (ε0/2)[−χ(2)

yxxEy
ωEy

ω + χ(2)
zxx(Ey

ωEz
ω + Ez

ωEy
ω)],

[P
(NL)
2ω ]x = 0,

and
[P(NL)

ω ]z = ε0[χ
(2)
zxxEy

2ωEy∗
ω + χ(2)

zzzE
z
2ωEz∗

ω ],

[P(NL)
ω ]y = ε0[−χ(2)

yxxEy
2ωEy∗

ω + χ(2)
zxx(Ey

2ωEz∗
ω + Ez

2ωEy∗
ω )],

[P(NL)
ω ]x = 0.

The wave equation

Strictly speaking, the previously formulated polarization density gives a coupled system between
the polarization states of both the fundamental and second harmonic waves, since both the y-
and z-components of the polarization densities at ω and 2ω contain components of all other field
components. However, for simplicity we will here restrict the continued analysis to the case of a

y-polarized input pump wave, which through the χ
(2)
zyy = χ

(2)
zxx elements give rise to a z-polarized

second harmonic frequency component at 2ω.
The electric fields of the fundamental and second harmonic optical waves are for the forward

propagating configuration expressed in their spatial envelopes Aω and A2ω as

Eω(x) = eyAy
ω(x) exp(ikωy

x), kωy
≡ ωnωy

/c ≡ ωnO(ω)/c

E2ω(x) = ezA
z
2ω(x) exp(ik2ωz

x), k2ωz
≡ 2ωn2ωz

/c ≡ 2ωnE(2ω)/c

Using the above separation of the natural, spatial oscillation of the light, in the infinite plane wave
approximation and by using the slowly varying envelope approximation, the wave equation for the
envelope of the second harmonic optical field becomes (see Eq. (6) in the notes from lecture eight)

∂Az
2ω

∂x
= i

µ0(2ω)2

2k2ωz

[P
(NL)
2ω ]z exp(−ik2ωz

x)

= i
µ0(2ω)2

2(2ωn2ωz
/c)

ε0

2
χ(2)

zxxAy
ω

2 exp(2ikωy
x)

︸ ︷︷ ︸

=[P
(NL)
2ω

]z

exp(−ik2ωz
x)

= i
ωχ

(2)
zxx

2n2ωz
c
Ay

ω
2 exp[i(2kωy

− k2ωz
)x],

3 Keep in mind that a negative frequency argument to the right of the semicolon in the suscep-
tibility is to be associated with the complex conjugate of the respective electric field; see Butcher
and Cotter, section 2.3.2.
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while for the fundamental wave,

∂Ay
ω

∂x
= i

µ0ω
2

2kωy

[P(NL)
ω ]y exp(−ikωy

x)

= i
µ0ω

2

2(ωnωy
/c)

ε0χ
(2)
zxxAz

2ω exp(ik2ωz
x)Ay∗

ω exp(−ikωy
x)

︸ ︷︷ ︸

=[P
(NL)
ω ]y

exp(−ikωy
x)

= i
ωχ

(2)
zxx

2nωy
c
Az

2ωAy∗
ω exp[−i(2kωy

− k2ωz
)x].

These equations can hence be summarized by the coupled system

∂Az
2ω

∂x
= i

ωχ
(2)
zxx

2n2ωz
c
Ay

ω
2 exp(i∆kx), (3a)

∂Ay
ω

∂x
= i

ωχ
(2)
zxx

2nωy
c
Az

2ωAy∗
ω exp(−i∆kx). (3b)

where
∆k = 2kωy

− k2ωz

= 2ωnωy
/c − 2ωn2ωz

/c

= (2ω/c)(nωy
− ωn2ωz

)

is the so-called phase mismatch between the pump and second harmonic wave.

Boundary conditions

Here the boundary conditions are simply that no second harmonic signal is present at the input,

Az
2ω(0) = 0,

together with a known input field at the fundamental frequency,

Ay
ω(0) = {known}.

Solving the wave equation

Considering a nonzero ∆k, the conversion efficiency is regularly quite small, and one may approx-
imately take the spatial distribution of the pump wave to be constant, Ay

ω(x) ≈ Ay
ω(0). Using this

approximation4, and by applying the initial condition Az
2ω(0) = 0 of the second harmonic signal,

one finds

Az
2ω(L) =

∫ L

0

∂Az
2ω(z)

∂x
dx

=

∫ L

0

i
ωχ

(2)
zxx

2n2ωz
c
Ay

ω
2(0) exp(i∆kx) dx

=
ωχ

(2)
zxx

2n2ωz
c
Ay

ω
2(0)

1

∆k
[exp(i∆kL) − 1]

=
{
Use [exp(i∆kL) − 1]/∆k = iL exp(i∆kL/2) sinc(∆kL/2)

}

= i
ωχ

(2)
zxxL

2n2ωz
c

Ay
ω

2(0) exp(i∆kL/2) sinc(∆kL/2).

4 For an outline of the method of solving the coupled system (1) exactly in terms of Jacobian
elliptic functions (thus allowing for a depleted pump as well), see J. A. Armstrong, N. Bloembergen,
J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918–1939, (1962).
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Figure 2. Conversion efficiency I2ω(L)/Iω(0) as function of normalized crystal length ∆kL/2. The
conversion efficiency is in the phase mismatched case (∆k 6= 0) a periodic function, with period
2Lc, with Lc = π/∆k being the coherence length.

In terms if the light intensities of the waves, one after a propagation distance x = L hence has the
second harmonic signal with intensity I2ω(L) expressed in terms of the input intensity Iω as

I2ω(L) =
1

2
ε0cn2ωz

|Az
2ω(L)|2

=
1

2
ε0cn2ωz

∣
∣
∣i

ωχ
(2)
zxxL

2n2ωz
c

Ay
ω

2(0) exp(i∆kL/2) sinc(∆kL/2)
∣
∣
∣

2

= ε0
ω2L2

8n2ωz
c
|χ(2)

zxx|
2|Ay

ω(0)|4 sinc2(∆kL/2)

=

{

Use |Ay
ω(0)|2 =

2Iω(0)

ε0cnωy

}

= ε0
ω2L2

8n2ωz
c
|χ(2)

zxx|
2 4I2

ω(0)

ε2
0c

2n2
ωy

sinc2(∆kL/2)

=
ω2L2

2ε0c3

|χ
(2)
zxx(−2ω; ω, ω)|2

n2ωz
n2

ωy

I2
ω(0) sinc2(∆kL/2),

i. e. with the conversion efficiency

I2ω(L)

Iω(0)
=

ω2L2

2ε0c3

|χ
(2)
zxx(−2ω; ω, ω)|2

n2ωz
n2

ωy

Iω(0) sinc2(∆kL/2).
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Figure 3. Ordinary and extraordinary refractive indices of a negative uniaxial crystal as function
of vacuum wavelength of the light, in the case of normal dispersion. Phase matching between the
pump and second harmonic wave is obtained whenever nωy

≡ nO(ω) = nE(2ω) ≡ n2ωz
.
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Figure 4. Conversion efficiency I2ω(L)/Iω(0) as function of normalized crystal length ∆kL/2 when
the material properties are periodically reversed, with a half-period of Lc.
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Optical Kerr-effect - Field corrected refractive index

As a start, we assume a monochromatic optical wave (containing forward and/or backward prop-
agating components) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,

with all spatial variation of the field contained in

Eω(z) = exEx
ω(z) + eyEy

ω(z) ∈ C
3.

The optical interaction

Optical Kerr-effect is in isotropic media described by the third order susceptibility5

χ
(3)
µαβγ(−ω; ω, ω,−ω).

Symmetries of the medium

The general set of nonzero components of χ
(3)
µαβγ for isotropic media are from Appendix A3.3 of

Butcher and Cotters book given as

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz,

χ(3)
yyzz = χ(3)

zzyy = χ(3)
zzxx = χ(3)

xxzz = χ(3)
xxyy = χ(3)

yyxx

χ(3)
yzyz = χ(3)

zyzy = χ(3)
zxzx = χ(3)

xzxz = χ(3)
xyxy = χ(3)

yxyx

χ(3)
yzzy = χ(3)

zyyz = χ(3)
zxxz = χ(3)

xzzx = χ(3)
xyyx = χ(3)

yxxy

(4)

with
χ(3)

xxxx = χ(3)
xxyy + χ(3)

xyxy + χ(3)
xyyx,

i. e. a general set of 21 elements, of which only 3 are independent.

Additional symmetries

By applying the intrinsic permutation symmetry in the middle indices for optical Kerr-effect, one
generally has

χ
(3)
µαβγ(−ω; ω, ω,−ω) = χ

(3)
µβαγ(−ω; ω, ω,−ω),

which hence slightly reduce the set (4) to still 21 nonzero elements, but of which now only two are
independent. For a beam polarized in the xy-plane, the elements of interest are only those which
only contain x or y in the indices, i. e. the subset

χ(3)
xxxx = χ(3)

yyyy, χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.

(α, ω) ⇋ (β, ω)

}

= χ(3)
xyxy = χ(3)

yxyx, χ(3)
xyyx = χ(3)

yxxy,

with
χ(3)

xxxx = χ(3)
xxyy + χ(3)

xyxy + χ(3)
xyyx,

i. e. a set of eight elements, of which only two are independent.

5 Again, keep in mind that in the convention of Butcher and Cotter, the frequency arguments to
the right of the semicolon may be writen in arbitrary order, hence we may in an equal description
instead use

χ
(3)
µαβγ(−ω; ω,−ω, ω)

or
χ

(3)
µαβγ(−ω;−ω, ω, ω)

for this description of the third order interaction between light and matter.
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The polarization density

The degeneracy factor K(−ω; ω, ω,−ω) is calculated as

K(−ω; ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From the reduced set of nonzero susceptibilities for the beam polarized in the xy-plane, and by using
the calculated value of the degeneracy factor in the convention of Butcher and Cotter, we hence have

the third order electric polarization density at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)],

with

P(3)
ω =

∑

µ

eµ(P (3)
ω )µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[

ε0
3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω; ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxEx
ωEx

ωEx
−ω + χ(3)

xyyxEy
ωEy

ωEx
−ω + χ(3)

xyxyEy
ωEx

ωEy
−ω + χ(3)

xxyyEx
ωEy

ωEy
−ω]

+ ey[χ(3)
yyyyEy

ωEy
ωEy

−ω + χ(3)
yxxyEx

ωEx
ωEy

−ω + χ(3)
yxyxEx

ωEy
ωEx

−ω + χ(3)
yyxxEy

ωEx
ωEx

−ω]}

= {Make use of E−ω = E∗

ω and relations χ(3)
xxyy = χ(3)

yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxEx
ω|E

x
ω|

2 + χ(3)
xyyxEy

ω
2Ex∗

ω + χ(3)
xyxy|E

y
ω|

2Ex
ω + χ(3)

xxyyEx
ω|E

y
ω|

2]

+ ey[χ(3)
xxxxEy

ω|E
y
ω|

2 + χ(3)
xyyxEx

ω
2Ey∗

ω + χ(3)
xyxy|E

x
ω|

2Ey
ω + χ(3)

xxyyEy
ω|E

x
ω|

2]}

= {Make use of the intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|E
x
ω|

2 + 2χ(3)
xxyy|E

y
ω|

2)Ex
ω + (χ(3)

xxxx − 2χ(3)
xxyy)Ey

ω
2Ex∗

ω

ey[(χ(3)
xxxx|E

y
ω|

2 + 2χ(3)
xxyy|E

x
ω|

2)Ey
ω + (χ(3)

xxxx − 2χ(3)
xxyy)Ex

ω
2Ey∗

ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ(3)

xxxx|E
x
ω|

2Ex
ω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|

2) contribution to the
refractive index (cf. Butcher and Cotter §6.3.1).

The wave equation – Time independent case

In this example, we consider continuous wave propagation6 in optical Kerr-media, using light
polarized in the x-direction and propagating along the positive direction of the z-axis,

E(r, t) = Re[Eω(z) exp(−iωt)], Eω(z) = Aω(z) exp(ikz) = exAx
ω(z) exp(ikz),

where, as previously, k = ωn0/c. From material handed out during the third lecture (notes on the
Butcher and Cotter convention), the nonlinear polarization density for x-polarized light is given

as P
(NL)
ω = P

(3)
ω , with

P(3)
ω = ε0(3/4)exχ(3)

xxxx(−ω; ω, ω,−ω)|Ex
ω|

2Ex
ω

= ε0(3/4)χ(3)
xxxx|Eω|

2Eω

= ε0(3/4)χ(3)
xxxx|Aω|

2Aω exp(ikz),

6 That is to say, a time independent problem with the temporal envelope of the electrical field
being constant in time.
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and the time independent wave equation for the field envelope Aω, using Eq. (6), becomes

∂

∂z
Aω = i

µ0ω
2

2k
ε0(3/4)χ(3)

xxxx|Aω|
2Aω exp(ikz)

︸ ︷︷ ︸

=P
(NL)
ω (z)

exp(−ikz)

= i
3ω2

8c2k
χ(3)

xxxx|Aω|
2Aω

= {since k = ωn0(ω)/c}

= i
3ω

8cn0
χ(3)

xxxx|Aω|
2Aω,

or, equivalently, in its scalar form

∂

∂z
Ax

ω = i
3ω

8cn0
χ(3)

xxxx|A
x
ω|

2Ax
ω.

Boundary conditions – Time independent case

For this special case of unidirectional wave propagation, the boundary condition is simply a known
optical field at the input,

Ax
ω(0) = {known}.

Solving the wave equation – Time independent case

If the medium of interest now is analyzed at an angular frequency far from any resonance, we may
look for solutions to this equation with |Aω(z)| being constant (for a lossless medium). For such
a case it is straightforward to integrate the final wave equation to yield the general solution

Aω(z) = Aω(0) exp[i
3ω

8cn0
χ(3)

xxxx|Aω(0)|2z],

or, again equivalently, in the scalar form

Ax
ω(z) = Ax

ω(0) exp[i
3ω

8cn0
χ(3)

xxxx|A
x
ω(0)|2z],

which hence gives the solution for the real-valued electric field E(r, t) as

E(r, t) = Re[Eω(z) exp(−iωt)]

= Re{Aω(z) exp[i(kz − ωt)]}

= Re{Aω(0) exp[i(
ωn0

c
z +

3ω

8cn0
χ(3)

xxxx|A
x
ω(0)|2z

︸ ︷︷ ︸

≡keffz

−ωt)]}.

From this solution, one immediately finds that the wave propagates with an effective propagation
constant

keff =
ω

c
[n0 +

3

8n0
χ(3)

xxxx|A
x
ω(0)|2],

that is to say, experiencing the intensity dependent refractive index

neff = n0 +
3

8n0
χ(3)

xxxx|A
x
ω(0)|2

= n0 + n2|A
x
ω(0)|2,

with

n2 =
3

8n0
χ(3)

xxxx.
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