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Nonlinear Optics 5A5513 (2003)

Structure of the course

Time dep. Schrödinger eqn.

ih̄dψdt = Ĥψ

Electric dipolar Hamiltonian

Ĥ
(ed)
I = −µ̂αEα(r, t)

Elec. quadrupolar Hamiltonian

Ĥ
(eq)
I = −q̂αβ∂βEα(r, t)

Magnetic dipolar Hamiltonian

Ĥ
(md)
I = −m̂αBα(r, t)

Crystallographic point

symmetry class

Spatial symmetry

(§5.3)

Neumann’s principle

(§5.3.1)

Time reversal symmetry

(§5.2)

Maxwell’s equations

(§7.1.1–7.1.3)

Matrix representaion

rαab = 〈a|r̂α|b〉
The density operator

(§3.1–3.6)

(
ih̄dρ̂dt = [Ĥ, ρ̂]

)

Perturbation analysis

(§3.7)

Susceptibility tensors,

general form (§4.3, §4.5)

Intrinsic permut. symmetry

(§2.1, §4.2)
(Causality)

Overall permut. symmetry

(§4.3, §5.1.1)

Unsöld approximation

(§4.7.2)

Susceptibility tensors,

reduced set (§5.3, App. 3)

(
Pα(r, t) = ε0(χ

(1)
αβEβ + χ

(2)
αβγEβEγ + . . .)

)

Born-Oppenheimer

approx. (§4.5.4)

Description of relaxation

[ĤR, ρ̂]ab = −ih̄Γρab (§6.2.5)

The Bloch equation

(§6.2.5–6.3.2, §6.4)

Rotating wave approx.

(§6.2.3)

Optical Stark effect

(§6.3.3)

Inhomogeneous broadening

(§6.3.4)

Matrix elements ρab(t)

of density operator

(
Pα(r, t) = NeTr[r̂αρ̂]

)

Magnetization

Mα(r, t)

Polarization density

Pα(r, t)

Electromagnetic wave

propagation

Slowly varying envelope

approximation (§7.1.4)

Multiple scales

(phase matching)

Invariants of motion

(classical mechanics)

Inverse scattering

transform (IST)

...

Linear refractive index

(§4.3.1, §6.3.1)

Linear absorption

(§4.5, §6.3.1)

1st order effects

OPG, OPO

(§7.2.2)

SHG

(§7.2.1)

Millers delta rule

(§4.7.3)

2nd order effects

Optical bistability

(§2.6)

THG

(§5.3.4)

Raman scattering

(§6.5, §4.5.2)

3rd order effects

Phase conjugation

(§7.4)

Brillouin scattering

(§2.3.3)

Optical solitons

(§7.5)

3rd order effects

Microscopic description

Macroscopic description

Non-resonant and weakly
resonant interactions Resonant interactions

Non-resonant interactions

Mathematical tools

Applications
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Lecture Notes on Nonlinear Optics Nonlinear Optics 5A5513 (2003)

Errors in The Elements of Nonlinear Optics (1991)
by Paul Butcher and David Cotter

Errata written by Fredrik Jonsson

Updated as of March 16, 2003

Please send additions or corrections to fredrik.jonsson@proximion.com

Below follows a listing of errors found in P. N. Butcher and D. Cotters book The Elements of
Nonlinear Optics (Cambridge University Press, Cambridge, 1991). Being a summary of the notes
I have made in my personal copy of the book since June 1996, this list should by no means be
considered as any kind of “official” list of errors, but rather as an attempt to collect the (rather
few) misprints in the text. In the list, not only typographical misprints, but also some inconsequent
notations – which do not alter the described theory – are included.

p. 15 [lines 14 and 16 ] In order not to introduce any ambiguity of the multiple arguments of the
symmetric and antisymmetric parts, the arguments (t; τ1, τ2) should be explicitly written in the
left-hand sides of the equations.

p. 15 [line 18 ] “. . . dummy variables ατ1 and βτ2.” should be replaced by “. . . dummy variables
(α, τ1) and (β, τ2).”, following the notation as used later in, for example, §2.3.2 and §4.3.1.
p. 49 [line 31 ] H1(t) should be replaced by HI(t).

p. 54 [lines 3, 4, and 6 ] In Eq. (3.80), the upper limit of integration t1 should be replaced by τ1.

p. 54 [lines 8 and 24 ] In Eqs. (3.81) and (3.82), the upper limits of integration t1 and tn−1 should
be replaced by τ1 and τn−1, respectively.

p. 60 [line 24 ] The sentence “To achieve this end we . . .” should be replaced by “To achieve this
we . . .”

p. 66 [line 11 ] In the right hand side of Eq. (4.49), one should in order not to cause confusion with
the Einstein convention of summation over repeated indices explicitly state that no summation is
implied, and hence the equation should be written as

H0ui(Θ) = Eiui(Θ). (no sum) (4.49)

using the common notation as used in tensor calculus.

p. 67 [line 6 ] “. . . express the the unperturbed . . .” should be replaced by “. . . express the unper-
turbed . . .”

p. 72 [line 15 ] “(α, ω1)” should be replaced by “(α, ω1)”.

p. 72 [last line ] “. . . of this type, one of which is an identity.” should be replaced by “. . . of this
type, of which one is an identity.”

p. 86 [line 4 ] In Eq. (4.103), “· · · ft(ωn · en〉” should be replaced by “· · · ft(ωn) · en〉”.
p. 93 [lines 12–13 ] Strictly speaking, the real part of the susceptibility χ(1)(−ωσ;ω) is not pro-
portional to the refractive index n(ω), but rather to n2(ω) − 1.

p. 97 [lines 15 and 20 ] Strictly speaking, Ωfg is the transition angular frequency, and does not
have the physical dimension of energy; therefore replace “Ωfg” in lines 15 and 20 by “~Ωfg”.

p. 106 [line 9 ] In the first term of Eq. (4.128), the summation should be performed over index j
rather than index i, i. e. replace

∑
i pj by

∑
j pj .

p. 132 [line 8 ] In Eq. (5.30), “Eiui(Θ)” should be replaced by “Eiui(Θ) (no sum)”.

p. 132 [line 25 ] “ρ0(a) = η exp(−Ea/kT )” should be replaced by “ρ0(a) = η exp(−Ea/kT )”.

3



Nonlinear Optics 5A5513 (2003) Lecture Notes on Nonlinear Optics

p. 136 [line 19 ] In Eq. (5.43), “χua(1)(−ω, ω)” should be replaced by “χ
(1)
ua (−ω, ω)”.

p. 159 [line 13 ] In the left-hand side of Eq. (6.33), the Hamiltonian H0 describing the system
is a quantum-mechanical operator, while in the right-hand side, the matrix representation of the
corresponding elements 〈m|H0|n〉 = δmnEn in the energy representation appears. In order to
overcome this inconsistency, Eq. (6.33) should (in analogy with, for example, Eq. (6.31) for the
matrix elements of the density operator) be replaced by either

(
〈a|H0|a〉 〈a|H0|b〉
〈b|H0|a〉 〈b|H0|b〉

)
=

(
Ea 0
0 Eb

)
,

or (
[H0]aa [H0]ab
[H0]ba [H0]bb

)
=

(
Ea 0
0 Eb

)
.

p. 160 [line 2 ] In the left-hand side of Eq. (6.34), the Hamiltonian HI(t) is a quantum-mechanical
operator, while in the right-hand side, the matrix representation of its scalar elements 〈a|HI(t)|b〉
appears. (The same inconsistency appear in Eq. (6.33).) In order to overcome this inconsistency,
Eq. (6.34) should (in analogy with, for example, Eq. (6.31) for the matrix elements of the density
operator) be replaced by either

(
〈a|HI(t)|a〉 〈a|HI(t)|b〉
〈b|HI(t)|a〉 〈b|HI(t)|b〉

)
=

(
δEa −erab · E(t)

−erba · E(t) δEb

)
,

or (
[HI(t)]aa [HI(t)]ab
[HI(t)]ba [HI(t)]bb

)
=

(
δEa −erab · E(t)

−erba · E(t) δEb

)
.

p. 164 [line 15 ] In Eq. (6.49), “i~(1 − ρbb)/Tb” should be replaced by “i~(1 − ρaa)/Tb”.†
p. 203 [lines 32–33 ] “Fig. 4.3” should be replaced by “Fig. 4.4(a)”.

p. 215 [line 11 ] In Eq. (7.14),

. . . = µ0

∫ ∞

−∞

dω′(ω + ω′)2 · · ·

should be replaced by

. . . =
1

c2

∫ ∞

−∞

dω′(ω + ω′)2 · · ·

p. 220 [section 7.2.1 ] In the example of second harmonic generation, the wave equation (7.26)
is given without any explanation of which point symmetry class it applies to, and hence it is
from the text virtually impossible to relate the effective nonlinear parameters to the elements of

χ
(2)
µαβ(−ωσ;ω, ω).

p. 234 [line 31 ] In Eq. (7.45), “. . . = iq∗Ê∗
3 >” should be replaced by “. . . = iq∗Ê∗

3”.

p. 240 [line 6 ] In the first line of Eq. (7.55), there is an ambiguity of the denominator, as well as
an erroneous dispersion term, and the equation

u = τ
√
n2ω/c|d2k/dω2|2Ê

should be replaced by
u = τ

√
n2ω/(c|d2k/dω2|)Ê.

(The other lines of Eq. (7.55) are correct.)

† Cf. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy (Academic
Press, New York, 1988), p. 33, Eqs. (2.3.1)–(2.3.2).
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p. 241 [line 30 ] The fundamental bright soliton solution to the nonlinear Schrödinger equation
should yield “u(ζ, s) = sech(s) exp(iζ/2)”, that is to say, without any minus sign in the exponential.

p. 251 [line 6 ] In Eq. (8.5), there is parenthesis mismatch in both right- and lefthand sides;

f0[(En(k)] = {exp[En(k) − EF]/kT + 1}−1

should be replaced by
f0[En(k)] = {exp[(En(k) − EF)/kT ] + 1}−1.

p. 252 [line 6 ] In Eq. (8.7), nph(ωs(q)) should be replaced by nph[ωs(q)], in order to follow the
functional style of notation as used in, for example, Eq. (8.5).

p. 253 [line 20 ] In Eq. (8.11), insert a “]” after En(k).

p. 298 [Table A3.2 ] “. . . no centre of symmetry . . .” should be replaced by “. . . no centre of
inversion . . .”.

p. 317 [lines 1, 9, and 24 ] In Appendix 9, there is an inconsistency in the notation for the polar-
isation density and the electric dipole operator, as compared to the one used in Chapters 3 and
4. While PD, PQ, and MD in Eq. (A9.1) (and in line 9 on the same page) denote the all-classical
electric dipolar, electric quadrupolar and magnetic dipolar polarization densities of the medium,
they in Eqs. (A9.6) and (A9.7) clearly denote quantum-mechanical operators. In order to overcome
this inconsistency in notation, which in addition gives a wrong answer if properly inserted into the
perturbation calculus etc., one should chose either of the conventions. By choosing PD, PQ, and
MD to denote the corresponding quantum-mechanical operators, which seem to be the easiest way
of correcting this inconsistency, the following corrections to the text should be made:

[line 1
P = PD + PQ, M = MD, (A9.1)

should be replaced by
P = 〈PD〉 + 〈PQ〉, M = 〈MD〉, (A9.1)

[line 9 Remove “PD” or replace with “〈PD〉”.
[line 24 Somewhere in Appendix 9, there should be a clarifying statement that the nabla

operator appearing in Eq. (A9.7) only is operating on the all-classical, macroscopic electric field
of the light, and hence should be regarded as a classical vector when evaluating the quantum-
mechanical trace that is involved in the expectation value of, for example, the corrected form of
Eq. (A9.1).

p. 318 [line 12 ] “M << H” should be replaced by “|M| � |H|”.
p. 318 [line 23 ] “ej · er + ik · q · ej + m · (k× ej)/ω” should be replaced by the same expression,
though with each term divided by e.

p. 333 [line 5 ] In reference Manley, J. M. and Rowe, H. E. (1956), the page numbers should yield
904 – 14.

p. 334 [line 44 ] “Terhune, R. W. and Weinburger, D. A. . . .” should be replaced by “Terhune,
R. W. and Weinberger, D. A. . . .”.
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Notes on the “Butcher and Cotter convention” in nonlinear optics

Convention for description of nonlinear optical polarization

As a “recipe” in theoretical nonlinear optics, Butcher and Cotter provide a very useful convention
which is well worth to hold on to. For a superposition of monochromatic waves, and by invoking
the general property of the intrinsic permutation symmetry, the monochromatic form of the nth
order polarization density can be written as

(P (n)
ωσ

)µ = ε0
∑

α1

· · ·
∑

αn

∑

ω

K(−ωσ;ω1, . . . , ωn)χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn)(Eω1
)α1

· · · (Eωn
)αn

.

(1)
The first summations in Eq. (1), over α1, . . . , αn, is simply an explicit way of stating that the
Einstein convention of summation over repeated indices holds. The summation sign

∑
ω, however,

serves as a reminder that the expression that follows is to be summed over all distinct sets of
ω1, . . . , ωn. Because of the intrinsic permutation symmetry, the frequency arguments appearing in
Eq. (1) may be written in arbitrary order.

By “all distinct sets of ω1, . . . , ωn”, we here mean that the summation is to be performed, as
for example in the case of optical Kerr-effect, over the single set of nonlinear susceptibilities that
contribute to a certain angular frequency as (−ω;ω, ω,−ω) or (−ω;ω,−ω, ω) or (−ω;−ω, ω, ω).
In this example, each of the combinations are considered as distinct, and it is left as an arbitary
choice which one of these sets that are most convenient to use (this is simply a matter of choosing
notation, and does not by any means change the description of the interaction).

In Eq. (1), the degeneracy factor K is formally described as

K(−ωσ;ω1, . . . , ωn) = 2l+m−np

where
p = the number of distinct permutations of ω1, ω2, . . . , ω1,

n = the order of the nonlinearity,

m = the number of angular frequencies ωk that are zero, and

l =

{
1, if ωσ 6= 0,
0, otherwise.

In other words, m is the number of DC electric fields present, and l = 0 if the nonlinearity we are
analyzing gives a static, DC, polarization density, such as in the previously (in the spring model)
described case of optical rectification in the presence of second harmonic fields (SHG).

A list of frequently encountered nonlinear phenomena in nonlinear optics, including the degen-
eracy factors as conforming to the above convention, is given in Butcher and Cotters book, Table
2.1, on page 26.

Note on the complex representation of the optical field

Since the observable electric field of the light, in Butcher and Cotters notation taken as

E(r, t) =
1

2

∑

ωk≥0

[Eωk
exp(−iωkt) + E∗

ωk
exp(iωkt)],

is a real-valued quantity, it follows that negative frequencies in the complex notation should be
interpreted as the complex conjugate of the respective field component, or

E−ωk
= E∗

ωk
.

7
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Example: Optical Kerr-effect

Assume a monochromatic optical wave (containing forward and/or backward propagating compo-
nents) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,

with all spatial variation of the field contained in

Eω(z) = exE
x
ω(z) + eyE

y
ω(z) ∈ C

3.

Optical Kerr-effect is in isotropic media described by the third order susceptibility

χ
(3)
µαβγ(−ω;ω, ω,−ω),

with nonzero components of interest for the xy-polarized beam given in Appendix 3.3 of Butcher
and Cotters book as

χ(3)
xxxx = χ(3)

yyyy , χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.

(α, ω) 
 (β, ω)

}
= χ(3)

xyxy = χ(3)
yxyx, χ(3)

xyyx = χ(3)
yxxy ,

with
χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx.

The degeneracy factor K(−ω;ω, ω,−ω) is calculated as

K(−ω;ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From this set of nonzero susceptibilities, and using the calculated value of the degeneracy factor in
the convention of Butcher and Cotter, we hence have the third order electric polarization density

at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)], with

P(3)
ω =

∑

µ

eµ(P
(3)
ω )µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[
ε0

3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω;ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ωE

x
ωE

x
−ω + χ(3)

xyyxE
y
ωE

y
ωE

x
−ω + χ(3)

xyxyE
y
ωE

x
ωE

y
−ω + χ(3)

xxyyE
x
ωE

y
ωE

y
−ω]

+ ey[χ
(3)
yyyyE

y
ωE

y
ωE

y
−ω + χ(3)

yxxyE
x
ωE

x
ωE

y
−ω + χ(3)

yxyxE
x
ωE

y
ωE

x
−ω + χ(3)

yyxxE
y
ωE

x
ωE

x
−ω]}

= {Make use of E−ω = E∗
ω and relations χ(3)

xxyy = χ(3)
yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ω|Exω|2 + χ(3)

xyyxE
y
ω

2Ex∗ω + χ(3)
xyxy |Eyω|2Exω + χ(3)

xxyyE
x
ω|Eyω|2]

+ ey[χ
(3)
xxxxE

y
ω|Eyω|2 + χ(3)

xyyxE
x
ω

2Ey∗ω + χ(3)
xyxy |Exω|2Eyω + χ(3)

xxyyE
y
ω|Exω|2]}

= {Make use of intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|Exω|2 + 2χ(3)
xxyy |Eyω|2)Exω + (χ(3)

xxxx − 2χ(3)
xxyy)E

y
ω

2Ex∗ω

ey[(χ
(3)
xxxx|Eyω|2 + 2χ(3)

xxyy |Exω|2)Eyω + (χ(3)
xxxx − 2χ(3)

xxyy)E
x
ω

2Ey∗ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ

(3)
xxxx|Exω|2Exω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|2) contribution to the

refractive index (cf. Butcher and Cotter §6.3.1).

8



Nonlinear Optics 5A5513 (2003)

Recommended reference literature in nonlinear optics

[1] P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University
Press, Cambridge, 1991). Uses SI units throughout the text.

[2] Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984). A standard text
which covers most of the phenomena and applications in nonlinear optics. More directed
towards the already active scientist in the field, rather than being a tutorial text. Uses
Gaussian units throughout the text.

[3] D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules
(Springer-Verlag, Berlin, 1979). Contains a somewhat more detailed description of electric
quadrupolar contributions to nonlinear susceptibilities than otherwise usually found in
textbooks in nonlinear optics. Uses SI units throughout the text.

[4] R. W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992). Starting more from an
atomic physics point of view, this book contains aspects on spectroscopical applications of
nonlinear optics. Uses Gaussian units throughout the text.

[5] P. Meystre and M. Sargent III, Elements of quantum optics (Springer-Verlag, Berlin, 1998),
3rd ed. The title of this book might be somewhat misleading, since the book contains quite
a lot of interesting discussions on nonlinear optical phenomena from a classical description.
This textbook provides a strict quantum-mechanical approach to linear as well as nonlinear
optical interactions. The authors have chosen to include somewhat more classical tools of
analysis as well, such as the Ikeda instability analysis of optical Kerr-media, and the
Lorenz model for the dynamics of the homogeneously broadened singlemode unidirectional
ring laser, the latter leading to solutions possessing deterministic chaos. Uses SI units
throughout the text.

[6] A. C. Newell and J. V. Moloney, Nonlinear optics (Addison-Wesley, New York, 1992).
In this book the principles of nonlinear optics are described from a more mathematical
point of view. Wave propagation in nonlinear optical media is covered in more detail than
in other books, and the theory of solitons is described. Contains a nice introduction to
the deterministic chaos which is an intrinsic property of some numerical solutions to the
wave propagation problem in certain nonlinear optical media. The book covers the Bloch
equations, describing the interaction between light and matter, but does surprisingly not
cover the origin of the nonlinear susceptibility tensors, even though they play a central
role in the first chapters of the book. In the last chapter, a review of mathematical and
computional tools that frequently are applied in nonlinear optics is presented. Uses SI
units throughout the text.

[7] N. Bloembergen Nonlinear Optics (World Scientific, London, 1996), 4th ed. Almost to be
considered as the historical text on nonlinear optics. The first edition of this book appeared
as early as 1965, just a few years after the first observations of nonlinear optical phenom-
ena by Franken et al. (1961). Some of the early, pioneering papers on nonlinear optics
(e. g. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127,
1918 (1962); P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett. 7,
118 (1961)) are in this book extended and presented in more detail. In 1981, Nicolaas
Bloembergen and Arthur Schawlow received the Nobel prize for their contribution to the
development of laser spectroscopy, in particular using nuclear magnetic resonance (NMR).
Gaussian units are used throughout the text.
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Nonlinear Optics 5A5513 (2003)
Lecture notes

Lecture 1

Nonlinear optics is the discipline in physics in which the electric polarization density of the medium
is studied as a nonlinear function of the electromagnetic field of the light. Being a wide field of
research in electromagnetic wave propagation, nonlinear interaction between light and matter leads
to a wide spectrum of phenomena, such as optical frequency conversion, optical solitons, phase
conjugation, and Raman scattering. In addition, many of the analytical tools applied in nonlinear
optics are of general character, such as the perturbative techniques and symmetry considerations,
and can equally well be applied in other disciplines in nonlinear dynamics.

The contents of this course

This course is intended as an introduction to the wide field of phenomena encountered in nonlinear
optics. The course covers:

• The theoretical foundation of nonlinear interaction between light and matter.
• Perturbation analysis of nonlinear interaction between light and matter.
• The Bloch equation and its interpretation.
• Basics of soliton theory and the inverse scattering transform.

It should be emphasized that the course does not cover state-of-the-art material constants
of nonlinear optical materials, etc. but rather focus on the theoretical foundations and ideas of
nonlinear optical interactions between light and matter.

A central analytical technique in this course is the perurbation analysis, with its foundation
in the analytical mechanics. This technique will in the course mainly be applied to the quantum-
mechanical description of interaction between light and matter, but is central in a wide field of
cross-disciplinary physics as well. In order to give an introduction to the analytical theory of
nonlinear systems, we will therefore start with the analysis of the nonlinear equations of motion
for the mechanical pendulum.

Examples of applications of nonlinear optics

Some important applications in nonlinear optics:

• Optical parametric amplification (OPA) and oscillation (OPO), ~ωp → ~ωs + ~ωi.
• Second harmonic generation (SHG), ~ω + ~ω → ~(2ω).
• Third harmonic generation (THG), ~ω + ~ω + ~ω → ~(3ω).
• Pockels effect, or the linear electro-optical effect (applications for optical switching).
• Optical bistability (optical logics).
• Optical solitons (ultra long-haul communication).
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A brief history of nonlinear optics

Some important advances in nonlinear optics:

• Townes et al. (1960), invention of the laser.1

• Franken et al. (1961), First observation ever of nonlinear optical effects, second harmonic
generation (SHG).2

• Terhune et al. (1962), First observation of third harmonic generation (THG).3

• E. J. Woodbury and W. K. Ng (1962), first demonstration of stimulated Raman scattering.4

• Armstrong et al. (1962), formulation of general permutation symmetry relations in nonlinear
optics.5

• A. Hasegawa and F. Tappert (1973), first theoretical prediction of soliton generation in optical
fibers.6

• H. M. Gibbs et al. (1976), first demonstration and explaination of optical bistability.7

• L. F. Mollenauer et al. (1980), first confirmation of soliton generation in optical fibers.8

Recently, many advances in nonlinear optics has been made, with a lot of efforts with fields of,
for example, Bose-Einstein condensation and laser cooling; these fields are, however, a bit out of
focus from the subjects of this course, which can be said to be an introduction to the 1960s and
1970s advances in nonlinear optics. It should also be emphasized that many of the effects observed
in nonlinear optics, such as the Raman scattering, were observed much earlier in the microwave
range.

Outline for calculations of polarization densities

Metals and plasmas

From an all-classical point-of-view, the calculation of the electric polarization density of metals and
plasmas, containing a free electron gas, can be performed using the model of free charges acting
under the Lorenz force of an electromagnetic field,

me
d2re

dt2
= −eE(t) − e

dre

dt
× B(t),

where E and B are all-classical electric and magnetic fields of the electromagnetic field of the light.
In forming the equation for the motion of the electron, the origin was chosen to coincide with the
center of the nucleus.

1 Charles H. Townes was in 1964 awarded with the Nobel Prize for the invention of the ammonia
laser.

2 Franken et al. detected ulvtraviolet light (λ = 347.1 nm) at twice the frequency of a ruby laser
beam (λ = 694.2 nm) when this beam traversed a quartz crystal; P. A. Franken, A. E. Hill, C. W.
Peters, G. Weinreich, Phys. Rev. Lett. 7, 118 (1961). Second harmonic generation is also the first
nonlinear effect ever observed where a coherent input generates a coherent output.

3 In their experiment, Terhune et al. detected only about a thousand THG photons per pulse,
at λ = 231.3 nm, corresponding to a conversion of one photon out of about 1015 photons at the
fundamental wavelength at λ = 693.9 nm; R. W. Terhune, P. D. Maker, and C. M. Savage, Phys.
Rev. Lett. 8, 404 (1962).

4 E. J. Woodbury and W. K. Ng, Proc. IRE 50, 2347 (1962).
5 The general permutation symmetry relations of higher-order susceptibilities were published by

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
6 A. Hasegawa and F. Tappert, “Transmission of stationary nonliner optica pulses in dispersive

optical fibers: I, Anomalous dispersion; II Normal dispersion”, Appl. Phys. Lett. 23, 142–144
and 171–172 (August 1 and 15, 1973).

7 H. M. Gibbs, S. M. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
8 L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimental observation of picosecond

pulse narrowing and solitons in optical fibers”, Phys. Rev. Lett. 45, 1095–1098 (September 29,
1980); the first reported observation of solitons was though made in 1834 by John Scott Russell, a
Scottish scientist and later famous Victorian engineer and shipbuilder, while studying water waves
in the Glasgow-Edinburgh channel.
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Dielectrics

A very useful model used by Drude and Lorentz9 to calculate the linear electric polarization of the
medium describes the electrons as harmonically bound particles.

For dielectrics in the nonlinear optical regime, as being the focus of our attention in this course,
the calculation of the electric polarization density is instead performed using a nonlinear spring
model of the bound charges, here quoted for one-dimensional motion as

me
d2xe

dt2
+ Γe

dxe

dt
+ α(1)xe + α(2)x2

e + α(3)x3
e + . . . = −eEx(t).

As in the previous case of metals and plasmas, in forming the equation for the motion of the
electron, the origin was also here chosen to coincide with the center of the nucleus.

This classical mechanical model will later in this lecture be applied to the derivation of the
second-order nonlinear polarzation density of the medium.

Introduction to nonlinear dynamical systems

In this section we will, as a preamble to later analysis of quantum-mechanical systems, apply
perturbation analysis to a simple mechanical system. Among the simplest nonlinear dynamical
systems is the pendulum, for which the total mechanical energy of the system, considering the
point of suspension as defining the level of zero potential energy, is given as the sum of the kinetic
and potential energy as

E = T + V =
1

2m
|p|2 −mgl(cosϑ− 1), (1)

where m is the mass, g the gravitation constant, l the length, and ϑ the angle of deflection of the
pendulum, and where p is the momentum of the point mass.

ϑ

m

l

ϕ

Figure 1. The mechanical pendulum.

From the total mechanical energy (1) of the system, the equations of motion for the point mass is
hence given by Lagranges equations,10

d

dt

(
∂L

∂pj

)
− ∂L

∂qj
= 0, j = x, y, z, (2)

where qj are the generalized coordinates, pj = q̇j are the components of the generalized momentum,
and L = T − V is the Lagrangian of the mechanical system. In spherical coordinates (ρ, ϕ, ϑ), the
momentum for the mass is given as its mass times the velocity,

p = ml(ϑ̇eϑ + ϕ̇ sinϑeϕ)

and the Lagrangian for the pendulum is hence given as

L =
1

2m
(p2
ϕ + p2

ϕ) +mgl(cosϑ− 1)

=
ml2

2
(ϑ̇2 + ϕ̇2 sin2 ϑ) +mgl(cosϑ− 1).

9 R. Becker, Elektronen Theorie, (Teubner, Leipzig, 1933).
10 Herbert Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Massachusetts, 1980).
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As the Lagrangian for the pendulum is inserted into Eq. (2), the resulting equations of motion are
for qj = ϕ and ϑ obtained as

d2ϕ

dt2
+

(
dϕ

dt

)2

sinϕ cosϕ = 0, (3a)

and
d2ϑ

dt2
+ (g/l) sinϑ = 0, (3b)

respectively, where we may notice that the motion in eϕ and eϑ directions are decoupled. We may
also notice that the equation of motion for ϕ is independent of any of the physical parameters
involved in te Lagrangian, and the evolution of ϕ(t) in time is entirely determined by the initial
conditions at some time t = t0.

In the following discussion, the focus will be on the properties of the motion of ϑ(t). The
equation of motion for the ϑ coordinate is here described by the so-called Sine-Gordon equation.11

This nonlinear differential equation is hard† to solve analytically, but if the nonlinear term is
expanded as a Taylor series around ϑ = 0,

d2ϑ

dt2
+ (g/l)(ϑ− ϑ3

3!
+
ϑ5

5!
+ . . .) = 0,

Before proceeding further with the properties of the solutions to the approximative Sine-Gordon,
including various orders of nonlinearities, the general properties will now be illustrated. In order to
illustrate the behaviour of the Sine-Gordon equation, we may normalize it by using the normalized
time τ = (g/l)1/2t, giving the Sine-Gordon equation in the normalized form

d2ϑ

dτ2
+ sinϑ = 0. (4)

The numerical solutions to the normalized Sine-Gordon equation are in Fig. 2 shown for initial
conditions (a) y(0) = 0.1, (b) y(0) = 2.1, and (c) y(0) = 3.1, all cases with y′(0) = 0.
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Solution to normalized Sine−Gordon equation, y(0)=0.10, dy(0)/dt=0
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Solution to normalized Sine−Gordon equation, y(0)=3.10, dy(0)/dt=0

Figure 2. Numerical solutions to the normalized Sine-Gordon equation.

11 The term “Sine-Gordon equation” has its origin as an allegory over the similarity between the
time-dependent (Sine-Gordon) equation

∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
= µ2

0 sinϕ,

appearing in, for example, relativistic field theories, as compared to the time-dependent Klein-
Gordon equation, which takes the form

∂2ϕ

∂z2
− 1

c2
∂2ϕ

∂t2
= µ2

0ϕ.

The Sine-Gordon equation is sometimes also called “pendulum equation” in the terminology of
classical mechanics.
† Impossible?
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First of all, we may consider the linear case, for which the approximation sinϑ ≈ ϑ holds. For
this case, the Sine-Gordon equation (4) hence reduces to the one-dimensional linear wave-equation,
with solutions ϑ = A sin((g/l)1/2(t − t0)). As seen in the frequency domain, this solution gives a
delta peak at ω = (g/l)1/2 in the power spectrum |ϑ̃(ω)|2, with no other frequency components
present. However, if we include the nonlinearities, the previous sine-wave solution will tend to
flatten at the peaks, as well as increase in period, and this changes the power spectrum to be
broadened as well as flattened out. In other words, the solution to the Sine-Gordon give rise to
a wide spectrum of frequencies, as compared to the delta peaks of the solutions to the linearized,
approximative Sine-Gordon equation.

From the numerical solutions, we may draw the conclusion that whenever higher order nonlinear
restoring forces come into play, even such a simple mechanical system as the pendulum will carry
frequency components at a set of frequencies differing from the single frequency given by the
linearized model of motion.

More generally, hiding the fact that for this particular case the restoring force is a simple sine
function, the equation of motion for the pendulum can be written as

d2ϑ

dt2
+ a(0) + a(1)ϑ+ a(2)ϑ2 + a(3)ϑ3 + . . . = 0. (5)

This equation of motion may be compared with the nonlinear wave equation for the electromagnetic
field of a travelling optical wave of angular frequency ω, of the form

∂2E

∂z2
+
ω2

c2
E +

ω2

c2
(χ(1)E + χ(2)E2 + χ(3)E3 + . . .) = 0,

which clearly shows the similarity between the nonlinear wave propagation and the motion of the
nonlinear pendulum.

Having solved the particular problem of the nonlinear pendulum, we may ask ourselves if the
equations of motion may be altered in some way in order to give insight in other areas of nonlinear
physics as well. For example, the series (5) that define the feedback that tend to restore the
mechanical pendulum to its rest position clearly defines equations of motion that conserve the
total energy of the mechanical system. This, however, in generally not true for an arbitrary series
of terms of various power for the restoring force. As we will later on see, in nonlinear optics
we generally have a complex, though in many cases most predictable, transfer of energy between
modes of different frequencies and directions of propagation.

The anharmonic oscillator

Among the simplest models of interaction between light and matter is the all-classical one-electron
oscillator, consisting of a negatively charged particle (electron) with mass me, mutually interacting
with a positively charged particle (proton) with mass mp, through attractive Coulomb forces.

E(t) = E(t)ex

x

xn xe

mn

qn = e

xe

me

qe = −e
k = k(xe − xn)

Figure 5. Setup of the one-dimensional undamped spring model.

In the one-electron oscillator model, several levels of approximations may be applied to the
problem, with increasing algebraic complexity. At the first level of approximation, the proton
is assumed to be fixed in space, with the electron free to oscillate around the proton. Quite
generally, at least within the scope of linear optics, the restoring spring force which confines the
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electron can be assumed to be linear with the displacement distance of the electron from the central
position. Providing the very basic models of the concept of refractive index and optical dispersion,
this model has been applied by numerous authors, such as Feynman [R. P. Feynman, Lectures
on Physics (Addison-Wesley, Massachusetts, 1963)], and Born and Wolf [M. Born and E. Wolf,
Principles of Optics (Cambridge University Press, Cambridge, 1980)].

Moving on to the next level of approximation, the bound proton-electron pair may be considered
as constituting a two-body central force problem of classical mechanics, in which one may assume
a fixed center of mass of the system, around which the proton as well as the electron are free to
oscillate. In this level of approximation, by introducing the concept of reduced mass for the two
moving particles, the equations of motion for the two particles can be reduced to one equation of
motion, for the evolution of the electric dipole moment of the system.

The third level of approximation which may be identified is when the center of mass is allowed
to oscillate as well, in which case an equation of motion for the center of mass appears in addition
to the one for the evolution of the electric dipole moment.

In each of the models, nonlinearities of the restoring central force field may be introduced as to
include nonlinear interactions as well. It should be emphasized that the spring model, as now will
be introduced, gives an identical form of the set of nonzero elements of the susceptibility tensors,
as compared with those obtained using a quantum mechanical analysis.

Throughout this analysis, the wavelength of the electromagnetic field will be assumed to be
sufficiently large in order to neglect any spatial variations of the fields over the spatial extent of
the oscillator system. In this model, the central force field is modelled by a mechanical spring force
with spring constant ke, as shown schematically in Fig. 5, and the all-classical Newton’s equations
of motion for the electron and nucleus are

me
∂2xe

∂t2
= −eE(t)︸ ︷︷ ︸

optical

− k0(xe − xn) + k1(xe − xn)2︸ ︷︷ ︸
spring

,

mn
∂2xn

∂t2
= +eE(t)︸ ︷︷ ︸

optical

+ k0(xe − xn) − k1(xe − xn)2︸ ︷︷ ︸
spring

,

corresponding to a system of two particles connected by a spring with spring “constant”

k = − ∂F
(spring)
e

∂(xe − xn)
=

∂F
(spring)
n

∂(xe − xn)
= k0 − 2k1(xe − xn).

By introducing the reduced mass12 mr = memn/(me +mn) of the system, the equation of motion
for the electric dipole moment p = −e(xe − xn) is then obtained as

∂2p

∂t2
+
k0

mr
p+

k1

emr
p2 =

e2

mr
E(t). (6)

This inhomogeneous nonlinear ordinary differential equation for the electric dipole moment is the
primary interest in the discussion that now is to follow.

The electric dipole moment of the anharmonic oscillator is now expressed in terms of a pertur-
bation series as

p(t) = p(0)(t) + p(1)(t)︸ ︷︷ ︸
∝E(t)

+ p(2)(t)︸ ︷︷ ︸
∝E2(t)

+ p(3)(t)︸ ︷︷ ︸
∝E3(t)

+ . . . ,

where each term in the series is proportional to the applied electrical field strength to the power
as indicated in the superscript of repective term, and formulate the system of n + 1 equations
for p(k), k = 0, 1, 2, . . . , n, that define the time evolution of the electric dipole. By inserting the

12 Herbert Goldstein, Classical Mechanics, 2nd ed. (Addison-Wesley, Massachusetts, 1980).
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perturbation series into Eq. (6), we hence have the equation

∂2p(0)

∂t2
+
∂2p(1)

∂t2
+
∂2p(2)

∂t2
+
∂2p(3)

∂t2
+ . . .

+
k0

mr
p(0) +

k0

mr
p(1) +

k0

mr
p(2) +

k0

mr
p(3) + . . .

+
k1

emr
(p(0) + p(1) + p(2) + . . .)(p(0) + p(1) + p(2) + . . .) =

e2

mr
E(t).

Since this equation is to hold for an arbitrary electric field E(t), that is to say, at least within the
limits of the validity of the perturbation analysis, each set of terms with equal power dependence
of the electric field must individually satisfy the relation. By sorting out the various powers and
identifying terms in the left and right hand sides of the equation, we arrive at the system of
equations

∂2p(0)

∂t2
+
k0

mr
p(0) +

k1

emr
p(0)2 = 0,

∂2p(1)

∂t2
+
k0

mr
p(1) +

k1

emr
2p(0)p(1) =

e2

mr
E(t),

∂2p(2)

∂t2
+
k0

mr
p(2) +

k1

emr
(2p(0)p(2) + p(1)2) = 0,

∂2p(3)

∂t2
+
k0

mr
p(3) +

k1

emr
(2p(0)p(3) + 2p(1)p(2)) = 0,

where we kept terms with powers of the electric field up to and including order three. At a first
glance, this system seem to suggest that only the first order of the perturbation series depends on
the applied electric field of the light; however, taking a closer look at the system, one can easily
verify that all orders of the dipole moment is coupled directly to the lower order terms. The system
of equations for p(k) can now be solved for k = 0, 1, 2, . . ., in that order, to successively provide
the basis of solutions for higher and higher order terms, until reaching some k = n after which we
may safely neglect the reamaining terms, hence providing an approximate solution.13

The zeroth order term in the perturbation series is decribed by a nonlinear ordinary differential
equation of order two, a so-calles Riccati equation, which analytically can be solved exactly, either
by directly applying the theory of Jacobian elliptic integrals of by applying the Riccati transor-
mation.14 However, by considering a system starting from rest, at a state of equilibrium, we can
immediately draw the conclusion that p(0)(t) must be identically zero for all times t. This, of
course, only holds for this particular model; in many molecular systems, such in water, a perma-
nent static dipole moment is present, something that is left out in this particular spring model
of ours. (Not to be confused with the static polarization induced by the electric field, which by
definition of the terms in the perturbation series is included in higher order terms, depending on
the power of the electric field.)

The first order term in the perturbation series is the first and only one with an explicit de-
pendence of the electric field of the light. Since the zeroth order perturbation term is zero, the
differential equation for the first order term is linear, which simplifies the calculus. However, since
it is an inhomogeneous differential equation, we must generally look for a total solution to the equa-
tion as a sum of a homogeneous solution (with zero right hand side) and a particular solution (with
the electric field in the right hand side present). The homogeneous solution, which will contain
two constants of integration (since we are considering second-order ordinary differential equation)
will though only give the part of the solution which depend on initial conditions, that is to say,

13 It should though be emphasized that in the limit n→ ∞, the described theory still is an exact
description of the motion of the electric dipole moment within this model of interaction between
light and matter.
14 For examples of the application of the Riccati transformation, see Zwillinger, Handbook of
Differential Equations, 2nd ed. (Academic Press, Boston, 1992).
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in this case a harmonic natural oscillation of the spring system which in the presence of damping
terms rapidly would decrease to zero. This implies that in order to find steady-state solutions, in
which the oscillation of the dipole moment directly follows the oscillation of the electric field of the
light, we may directly start looking for the particular solution. For a time harmonic electric field,
here taken as

E(t) = Eω sin(ωt),

the particular solution for the first order term is after some straightforward algebra given as15

p(1) =
(e2/mr)

(k0/mr − ω2)
Eω sin(ωt), ω2 6= (k0/mr).

For a material consisting of N dipoles per unit volume, and by following the conventions for the
linear electric susceptibility in SI units, this corresponds to a first order electric polarization density
of the form

P (1)(t) = P (1)
ω sin(ωt)

= ε0χ
(1)(ω)Eω sin(ωt),

with the first order (linear) electric susceptibility given as

χ(1)(ω) = χ(1)(−ω;ω) =
N

ε0

(e2/mr)

(Ω2 − ω2)
,

where the resonance frequency Ω2 = k0/mr was introduced. The Lorenzian shape of the frequency
dependence is shown in Fig. 6.

15 For the sake of self consistency, the general solution for the first order term is given as

p(1) = A cos((k0/mr)
1/2t) +B sin((k0/mr)

1/2t) +
e2/mr

k0/mr − ω2
Eω sin(ωt),

where A and B are constants of integration, determined by initial conditions.
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Figure 6. Lorenzian shape of the linear susceptibility χ(1)(−ω;ω).

Continuing with the second order perturbation term, some straightforward algebra gives that
the particular solution for the second order term of the electric dipole moment becomes

p(2)(t) = − k1e
3

2k0m2
r

1

(Ω2 − ω2)
E2
ω +

k1e
3

2m3
r

1

(Ω2 − ω2)(Ω2 − 4ω2)
E2
ω

+
k1e

3

m3
r

1

(Ω2 − ω2)(Ω2 − 4ω2)
E2
ω sin2(ωt).

In terms of the polarization density of the medium, still with N dipoles per unit volume and
following the conventions in regular SI units, this can be written as

P (2)(t) = P
(0)
0 + P

(0)
2ω sin(2ωt)

= ε0χ
(2)(0;ω,−ω)EωEω︸ ︷︷ ︸
DC polarization

+ ε0χ
(2)(−2ω;ω, ω)EωEω sin(2ω)︸ ︷︷ ︸
second harmonic polarization

with the second order (quadratic) electric susceptibility given as

χ(2)(0;ω,−ω) =
N

ε0

k1e
3

2m3
r

[
1

(Ω2 − ω2)(Ω2 − 4ω2)
− 1

Ω2(Ω2 − ω2)

]
,

χ(2)(2ω;ω, ω) =
N

ε0

k1e
3

m3
r

1

(Ω2 − ω2)(Ω2 − 4ω2)
.

From this we may notice that for one-photon resonances, the nonlinearities are enhanced whenever
ω ≈ Ω or 2ω ≈ Ω, for the induced DC as well as the second harmonic polarization density.

The explicit frequency dependencies of the susceptibilities χ(2)(−2ω;ω, ω) and χ(2)(0;ω,−ω)
are shown in Figs. 7 and 8.
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Figure 7. Lorenzian shape of the linear susceptibility χ(2)(−2ω;ω, ω) (SHG).
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Figure 8. Lorenzian shape of the linear susceptibility χ(2)(0;ω,−ω) (DC).

A well known fact in electromagnetic theory is that an electric dipole that oscillates at a certain
angular frequency, say at 2ω, also emits electromagnetic radiation at this frequency. In particular,
this implies that the term described by the susceptibility χ(2)(−2ω;ω, ω) will generate light at
twice the angular frequency of the light, hence generating a second harmonic light wave.
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Lecture 2

Nonlinear polarization density

From the introductory perturbation analysis of the all-classical anharmonic oscillator in the pre-
vious lecture, we now a priori know that it is possible to express the electric polarization density
as a power series in the electric field of the optical wave.

Loosely formulated, the electric polarization density in complex notation can be taken as the
series

Pµ(ωσ) = ε0[χ
(1)
µα(−ωσ;ωσ)Eα(ωσ)︸ ︷︷ ︸

∼P
(1)
µ (ωσ)

+ χ
(2)
µαβ(−ωσ;ω1, ω2)Eα(ω1)Eβ(ω2)︸ ︷︷ ︸

∼P
(2)
µ (ωσ), ωσ=ω1+ω2

+ χ
(3)
µαβγ(−ωσ;ω1, ω2, ω3)Eα(ω1)Eβ(ω2)Eγ(ω3)︸ ︷︷ ︸

∼P
(3)
µ (ωσ), ωσ=ω1+ω2+ω3

+ . . . ]

where we adopted Einstein’s convention of summation for terms with repeated subscripts. (A more
formal formulation of the polarization density will be described later.)

Symmetries in nonlinear optics

There are essentially four classes of symmetries that we will encounter in this course:

[1] Intrinsic permutation symmetry:

χ
(3)
µαβγ(−ωσ;ω1, ω2, ω3) = χ

(3)
µβαγ(−ωσ;ω2, ω1, ω3)

= χ
(3)
µβγα(−ωσ;ω2, ω3, ω1)

= χ
(3)
µγβα(−ωσ;ω3, ω2, ω1),

that is to say, invariance under the n! possible permutations of (αk, ωk), k = 1, 2, . . . , n. This
principle applies generally to resonant as well as nonresonant media. (Described in this lecture.)

[2] Overall permutation symmetry:

χ
(3)
µαβγ(−ωσ;ω1, ω2, ω3) = χ

(3)
αµβγ(ω1;−ωσ, ω2, ω3)

= χ
(3)
αβµγ(ω1;ω2,−ωσ, ω3)

= χ
(3)
αβγµ(ω1;ω2, ω3,−ωσ),

that is to say, invariance under the (n + 1)! possible permutations of (µ,−ωσ), (αk, ωk), k =
1, 2, . . . , n. This principle applies to nonresonant media, where all optical frequencies appearing
in the formula for the susceptibility are removed far from the transition frequencies of the
medium. (Described in lecture 4.)

[3] Kleinman symmetry:

χ
(3)
µαβγ(−ωσ;ω1, ω2, ω3) = χ

(3)
αµβγ(−ωσ;ω1, ω2, ω3)

= χ
(3)
αβµγ(−ωσ;ω1, ω2, ω3)

= χ
(3)
αβγµ(−ωσ;ω1, ω2, ω3),
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that is to say, invariance under the (n+1)! possible permutations of the subscripts µ, α1, . . . , αn.
This principle is a consequence of the overall permutation symmetry, and applies in the low-
frequency limit of nonresonant media.

[4] Spatial symmetries, given by the point symmetry class of the medium. (Described in lecture 6.)

Conditions for observing nonlinear optical interactions

Loosely formulated, a nonlinear response between light and matter depends on one of two key
indgredients: either there is a resonance between the light wave and some natural oscillation mode
of the medium, or the light is sufficiently intense. Direct resonance can occur in isolated intervals
of the electromagnetic spectrum at
• ultraviolet and visible frequencies (1015 s−1) where the oscillator corresponds to an electronic

transition of the medium,
• infrared (1013 s−1), where the medium has vibrational modes, and
• the far infrared-microwave range (1011 s−1), where there are rotational modes. These interac-

tions are also called one-photon processes, and are schematically illustrated in Fig. 3.

|a〉

|b〉

h̄ω h̄ω

The one-photon transition.

Figure 3. Transition scheme of the one-photon process.

The lower frequency modes can be excited at optical frequencies (1015 s−1) through indirect reso-
nant processes in which the difference in frequencies and wave vectors of two light waves, called the
pump and Stokes wave, respectively, matches the frequency and wave vector of one of these lower
frequency modes. These three-frequency interactions are sometime called two-photon processes.
In the case where there “lower frequency” mode is an electronic transition or in the vibrational
range (in which case the Stokes frequency can be of the same order of magnitude as that of the
light wave), this process is called Raman scattering.

|a〉 (initial)

|c〉 (final)

|b〉

h̄ω1 h̄ω2

The Stokes Raman transition.

|a〉 (final)

|c〉 (initial)

|b〉

h̄ω1 h̄ω2

The Anti-Stokes Raman transition.

Figure 4. Transition schemes of stimulated Raman Scattering.

The stimulated Raman scattering is essentially a two-photon process in which one photon at ω1

is absorbed and one photon at ω2 is emitted, while the material makes a transition from the
initial state |a〉 to the final state |c〉, as shown in Fig. 4. Energy conservation requires the Raman
resonance frequency (electronic or vibrational) to satisfy ~Ωca = ~(ω1 − ω2), and hence we may
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classify the Stokes and Anti-Stokes transitions as

~Ωca > 0 ⇔ Stokes Raman

~Ωca < 0 ⇔ Anti − Stokes Raman

When the lower frequency mode instead is an acoustic mode of the material, the process is instead
called Brillouin scattering.

As will be shown explicitly later on in the course, optical resonance with transitions of the
material is an important tool for “boosting up” the nonlinearities, with enhanced possibilities of
applications. However, at single-photon resonance we have a strong absorption at the frequency
of the optical field, and in most cases this is a non-desirable effect, since it decreases the optical
intensity, even though it meanwhile also enhances the nonlinearity of the material.

However, by instead exploiting the two-photon resonance, the desired nonlinearity can be sig-
nificantly enhanced whilst at the same time the competing absorption process can be minimized
by avoiding coincidences between optical frequencies and single-photon resonances.

One general drawback with the resonant enhancement is that the response time of the polar-
ization density of the material is slowed down, affecting applications such as optical switching or
modulation, where speed is of importance.

Phenomenological description of the susceptibility tensors

Before entering the full quantum-mechanical formalism, we will assume the medium to possess a
temporal response described by time response functions R(t).

The very first step in the analysis is to express the electric polarization density, which in classical
electrodynamical terms is expressed as the sum over all M electric charges qk in a small volume V
centered at r,

P(r, t) =
1

V

M∑

k=1

qkrk(t),

as a series expansion

P(r, t) = P(0)(r, t) + P(1)(r, t) + P(2)(r, t) + . . .+ P(n)(r, t) + . . . ,

where P(1)(r, t) is linear in the electric field, P(2)(r, t) is quadratic in the electric field, etc. The
field-independent P(0)(r, t) corresponds to eventually appearing static polarization of the medium.
It should be emphasized that any of these terms may be linear as well as nonlinear functions of
the electric field of the optical wave; i. e. an externally applied static electric field may together
with the electric field of the light interact through, for example, P(3)(r, t) to induce an electric
polarization that is linear in the optical field.

R(t− τ)

tt = τ

R = 0

Figure 9. Schematic form of a possible response function in time domain.

In the analysis that now is to follow, we will a priori assume that it is possible to express the
polarization density as a perturbation series. Later on, we will show how each of the terms can be
derived from a more stringent basis, where it also will be stated which conditions that must hold
in order to apply perturbation theory.
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Linear polarization response function

Since P(1)(r, t) is taken as linear in the electric field, we may express the linear polarization density
of the medium as being related to the optical field as

P (1)
µ (r, t) = ε0

∫ ∞

−∞

T (1)
µα (t; τ)Eα(r, τ) dτ, (7)

where T
(1)
µα (t; τ) is a rank-two tensor that weights all contributions in time from the electric field

of the light. A few required properties of T
(1)
µα (t; τ) can immediately be stated:

• Causality. We require that no optically induced contribution can occur before the field is

applied, i. e. T
(1)
µα (t; τ) = 0 for t ≤ τ .

• Time invariance. Under most circumstances, we may in addition assume that the material

parameters are constant in time, such that P
(1)
µ (r, t′) is identical to the polarisation as induced

by the time-displaced electric field Eα(r, t′).

The second of these properties is essentially a manifestation of an adiabatically following change
of the carrier wave of the optical field.

By using Eq. (7), the time invariance of the constitutive relation gives that

P (1)
µ (r, t+ t0) = ε0

∫ ∞

−∞

T (1)
µα (t+ t0; τ)Eα(r, τ) dτ

=
{
Should equal to polarization induced by Eα(r, τ + t0)

}

= ε0

∫ ∞

−∞

T (1)
µα (t; τ)Eα(r, τ + t0) dτ

=
{
τ ′ = τ + t0

}

= ε0

∫ ∞

−∞

T (1)
µα (t; τ ′ − t0)Eα(r, τ ′) dτ ′,

from which we, by changing the “dummy” variable of integration back to τ , obtain the relation

T (1)
µα (t+ t0; τ) = T (1)

µα (t; τ − t0).

In particular, by setting t = 0 and replacing the arbitrary time displacement t0 by t, one finds that
the response of the medium depends only of the time difference τ − t,

T (1)
µα (t; τ) = T (1)

µα (0; τ − t)

= R(1)
µα(τ − t)

where we defined the linear polarization response function R
(1)
µα(τ − t), being a rank-two tensor

depending only on the time difference τ − t.
To summarize, the linear contribution to the electric polarization density is given in terms of

the linear polarization response function as

P (1)
µ (r, t) = ε0

∫ ∞

−∞

R(1)
µα(t− τ)Eα(r, τ) dτ,

= ε0

∫ ∞

−∞

R(1)
µα(τ ′)Eα(r, t− τ ′) dτ ′,

(8)

and the causality condition for the linear polarization response function requires that

R(1)
µα(τ − t) = 0, t ≤ τ,

and in addition, since the relation (8) is to hold for arbitrary time evolution of the electrical field,

and since the polarization density P
(1)
µ (r, t) and the electric field E

(1)
α (r, t) both are real-valued

quantities, we also require the polarization response function R
(1)
µα(τ−t) to be a real-valued function.
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Quadratic polarization response function

The second-order, quadratic polarization density can in similar to the linear one be phenomeno-
logically be written as the sum of all infinitesimal previous contributions in time. In this case,
we must though include the possibility that not all contributions origin in the same time scale,
and hence the proper formulation of the second order polarization density is as a two-dimensional
integral,

P (2)
µ (r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

T
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2. (9)

The tensor T
(2)
µαβ(t; τ1, τ2) uniquely determines the quadratic, second-order polarization of the

medium. However, the tensor T
(2)
µαβ(t; τ1, τ2) is not itself unique. To see this, we may express

the tensor as a sum of a symmetric part and an antisymmetric part,

T
(2)
µαβ(t; τ1, τ2) =

1

2

[
T

(2)
µαβ(t; τ1, τ2) + T

(2)
µβα(t; τ2, τ1)

]

︸ ︷︷ ︸
symmetric

+
1

2

[
T

(2)
µαβ(t; τ1, τ2) − T

(2)
µβα(t; τ2, τ1)

]

︸ ︷︷ ︸
antisymmetric

= S
(2)
µαβ(t; τ1, τ2)︸ ︷︷ ︸

=S
(2)

µβα
(t;τ2,τ1)

+A
(2)
µαβ(t; τ1, τ2)︸ ︷︷ ︸

=−A
(2)

µβα
(t;τ2,τ1)

As this form of the response function is inserted into the original expression (9) for the second
order polarization density, we immediately find that it is left invariant under the interchange of the
dummy variables (α, τ1) and (β, τ2) (since the integration is performed from minus to plus infinity
in time). In particular, it from this follows that

P (2)
µ (r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

[S
(2)
µαβ(t; τ1, τ2) +A

(2)
µαβ(t; τ1, τ2)]Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫ ∞

−∞

∫ ∞

−∞

S
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

︸ ︷︷ ︸
≡I1

+ ε0

∫ ∞

−∞

∫ ∞

−∞

A
(2)
µαβ(t; τ1, τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

︸ ︷︷ ︸
≡I2

= ε0

∫ ∞

−∞

∫ ∞

−∞

S
(2)
µβα(t; τ2, τ1)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

− ε0

∫ ∞

−∞

∫ ∞

−∞

A
(2)
µβα(t; τ2, τ1)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫ ∞

−∞

∫ ∞

−∞

S
(2)
µβα(t; τ2, τ1)Eβ(r, τ2)Eα(r, τ1) dτ1 dτ2

︸ ︷︷ ︸
=I1

− ε0

∫ ∞

−∞

∫ ∞

−∞

A
(2)
µβα(t; τ2, τ1)Eβ(r, τ2)Eα(r, τ1) dτ1 dτ2

︸ ︷︷ ︸
=I2

i. e. the symmetric part satisfy the trivial identity I1 = I1, while the antisymmetric part satisfy
I2 = −I2, i. e. the antisymmetric part does not contribute to the polarization density, and that
we may set the antiymmetric part to zero, without imposing any constraint on the validity of the
theory.

The time response T
(2)
µαβ(t; τ1, τ2) is then unique and now chosen to be symmetric,

T
(2)
µαβ(t; τ1, τ2) = T

(2)
µβα(t; τ2, τ1).
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This procedure of symmetrization may seem like an all theoretical contruction, somewhat out of
focus of what lies ahead, but in fact it turns out to be an extremely useful property that we
later on will exploit extensively. The previously described symmetric property will later on, for
susceptibility tensors in the frequency domain, be denoted as the intrinsic permutation symmetry,
a general property that will hold irregardless of whether the nonlinear interaction under analysis
is highly resonant or far from resonance.

By again applying the arguments of time invariance, as previously for the linear response
function, we find that

T
(2)
µαβ(t+ t0; τ1, τ2) = T

(2)
µαβ(t; τ1 − t0, τ2 − t0)

for all t, τ1, and τ2. Hence, by setting t = 0 and then replacing th arbitrary time t0 by t, again
as previously done for the linear case, one finds that T (2)(t; τ1, τ2) depends only on the two time
differences t− τ1 and t− τ2. To make this fact explicit, we may hence write the response function
as

T
(2)
µαβ(t; τ1, τ2) = R

(2)
µαβ(t− τ1, t− τ2),

giving the canonical form of the quadratic polarization density as

P (2)
µ (r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(t− τ1, t− τ2)Eα(r, τ1)Eβ(r, τ2) dτ1 dτ2

= ε0

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(τ

′
1, τ

′
2)Eα(r, t− τ ′1)Eβ(r, t− τ ′2) dτ

′
1 dτ

′
2.

(10)

The tensor R
(2)
µαβ(τ1, τ2) is called the quadratic electric polarization response of the medium, and in

similar with the linear response function, arguments of causality require the response function to
be zero whenever τ1 and/or τ2 is negative. Similarly, the reality condition on Eα(r, t) and Pα(r, t)

requires that R
(2)
µαβ(τ1, τ2) is a real-valued function.

Higher order polarization response functions

The nth order polarization density can in similar to the linear (n = 1 and quadratic (n = 2) ones
be written as

P (n)
µ (r, t) = ε0

∫ ∞

−∞

· · ·
∫ ∞

−∞

R
(n)
µα1···αn

(t− τ1, . . . , t− τn)Eα1
(r, τ1) · · ·Eαn

(r, τn) dτ1 · · · dτn

= ε0

∫ ∞

−∞

· · ·
∫ ∞

−∞

R
(n)
µα1···αn

(τ ′1, . . . , τ
′
n)Eα1

(r, t− τ ′1) · · ·Eαn
(r, t− τ ′n) dτ

′
1 · · · dτ ′n,

(11)

where the nth order response function is a tensor of rank n + 1, and a real-valued function of
the n parameters τ1, . . . , τn, vanishing whenever any τk < 0, k = 1, 2, . . . , n, and with the intrin-
sic permutation symmetry that it is left invariant under any of the n! pairwise permutations of
(α1, τ1), . . . , (αn, τn).
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Lecture III
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Susceptibility tensors in the frequency domain

The susceptibility tensors in the frequency domain arise when the electric field Eα(t) of the light
is expressed in terms of its Fourier transform Eα(ω), by means of the Fourier integral identity

Eα(t) =

∫ ∞

−∞

Eα(ω) exp(−iωt) dω = F
−1[Eα](t), (1′)

with inverse relation

Eα(ω) =
1

2π

∫ ∞

−∞

Eα(τ) exp(iωτ) dτ = F[Eα](ω). (1′′)

This convention of inclusion of the factor of 2π, as well as the sign convention, is commonly used
in quantum mechanics; however, it should be emphasized that this convention is not a commonly
adopted standard in optics, neither in linear nor in nonlinear optical regimes.

The sign convention here used leads to wave solutions of the form f(kz−ωt) for monochromatic
waves propagating in the positive z-direction, which might be somewhat more intuitive than the
alternative form f(ωt−kz), which is obtained if one instead apply the alternative sign convention.

The convention for the inclusion of 2π in the Fourier transform in Eq. (1′′) is here convenient
for description of electromagnetic wave propagation in the frequency domain (going from the time
domain description, in terms of the polarization response functions, to the frequency domain, in
terms of the linear and nonlinear susceptibilities), since it enables us to omit any multiple of 2π of
the Fourier transformed fields.

First order susceptibility tensor

By inserting Eq. (1′) is inserted into the previously obtained1 relation for the first order, linear
polarization density, one obtains

P (1)
µ (r, t) = ε0

∫ ∞

−∞

R(1)
µα(τ)Eα(r, t− τ) dτ,

= {express Eα(r, t− τ) in frequency domain}

= ε0

∫ ∞

−∞

R(1)
µα(τ)

∫ ∞

−∞

Eα(r, ω) exp[−iω(t− τ)] dω dτ,

= {change order of integration}

= ε0

∫ ∞

−∞

∫ ∞

−∞

R(1)
µα(τ)Eα(r, ω) exp(iωτ) dτ exp(−iωt) dω,

= ε0

∫ ∞

−∞

χ(1)
µα(−ω;ω)Eα(r, ω) exp(−iωt) dω,

(2)

where the linear electric dipolar susceptibility,

χ(1)
µα(−ω;ω) =

∫ ∞

−∞

R(1)
µα(τ) exp(iωτ) dτ = F[R(1)

µα](ω), (3)

1 Expressions for the first order, second order, and nth order polarization densities were obtained
in lecture two.
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was introduced. In this expression for the susceptibility, ωσ = ω, and the reasons for the somewhat
peculiar notation of arguments of the susceptibility will be explained later on in the context of
nonlinear susceptibilities.

Second order susceptibility tensor

In similar to the linear susceptibility tensor, by inserting Eq. (1′) into the previously obtained
relation for the second order, quadratic polarization density, one obtains

P (2)
µ (r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(τ1, τ2)Eα(r, ω1)Eβ(r, ω2)

× exp[−i(ω1(t− τ1) + ω2(t− τ2))] dτ1 dτ2 dω1 dω2

= ε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
µαβ(−ωσ;ω1, ω2)Eα(r, ω1)Eβ(r, ω2) exp[−i (ω1 + ω2)︸ ︷︷ ︸

≡ωσ

t] dω1 dω2

(4)

where the quadratic electric dipolar susceptibility,

χ
(2)
µαβ(−ωσ;ω1, ω2) =

∫ ∞

−∞

∫ ∞

−∞

R
(2)
µαβ(τ1, τ2) exp[i(ω1τ1 + ω2τ2)] dτ1 dτ2, (5)

was introduced. In this expression for the susceptibility, ωσ = ω1 + ω2, and the reason for the
notation of arguments should now be somewhat more clear: the first angular frequency argument
of the susceptibility tensor is simply the sum of all driving angular frequencies of the optical field.

The intrinsic permutation symmetry of R
(2)
µαβ(τ1, τ2), the second order polarization response

function, carries over to the second order susceptibility tensor as well, in the sense that

χ
(2)
µαβ(−ωσ;ω1, ω2) = χ

(2)
µβα(−ωσ;ω2, ω1),

i. e. the second order susceptibility is invariant under any of the 2! = 2 pairwise permutations of
(α, ω1) and (β, ω2).

Higher order susceptibility tensors

In similar to the linear and quadratic susceptibility tensors, by inserting Eq. (1′) into the previously
obtained relation for the nth order polarization density, one obtains

P (n)
µ (r, t) = ε0

∫ ∞

−∞

· · ·
∫ ∞

−∞

χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn)Eα1
(r, ω1) · · ·Eαn

(r, ωn)

× exp[−i (ω1 + . . .+ ωn)︸ ︷︷ ︸
≡ωσ

t] dω1 · · · dωn,
(6)

where the nth order electric dipolar susceptibility,

χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

R
(n)
µα1···αn

(τ1, . . . , τn) exp[i(ω1τ1+. . .+ωnτn)] dτ1 · · · dτn,
(7)

was introduced, and where, as previously,

ωσ = ω1 + ω2 + . . .+ ωn.

The intrinsic permutation symmetry of R
(n)
µα1···αn

(τ1, . . . , τn), the nth order polarization re-
sponse function, also in this general case carries over to the nth order susceptibility tensor as well,
in the sense that

χ
(n)
µα1α2···αn

(−ωσ;ω1, ω2, . . . , ωn)

is invariant under any of the n! pairwise permutations of (α1, ω1), (α2, ω2), . . ., (αn, ωn).
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Monochromatic fields

It should at this stage be emphasized that even though the electric field via the Fourier integral
identity can be seen as a superposition of infinitely many infinitesimally narrow band monochro-
matic components, the superposition principle of linear optics, which states that the wave equation
may be independently solved for each frequency component of the light, generally does not hold
in nonlinear optics.

For monochromatic light, the electric field can be written as a superposition of a set of distinct
terms in time domain as

E(r, t) =
∑

k

Re[Eωk
exp(−iωkt)],

with the convention that the involved angular frequencies all are taken as positive, ωk ≥ 0, and
the electric field in the frequency domain simply becomes a superposition of delta peaks in the
spectrum,

E(r, ω) =
1

2π

∫ ∞

−∞

E(r, τ) exp(iωτ) dτ

= {express as monochromatic field}

=
1

2π

∑

k

∫ ∞

−∞

Re[Eωk
exp(−iωkτ)] exp(iωτ) dτ

= {by definition}

=
1

4π

∑

k

∫ ∞

−∞

[Eωk
exp(i(ω − ωk)τ) + E∗

ωk
exp(i(ω + ωk)τ)] dτ

=
1

2

∑

k

[
Eωk

1

2π

∫ ∞

−∞

exp(i(ω − ωk)τ) dτ

︸ ︷︷ ︸
≡δ(ω−ωk)

+E∗
ωk

1

2π

∫ ∞

−∞

exp(i(ω + ωk)τ) dτ

︸ ︷︷ ︸
≡δ(ω+ωk)

]

= {definition of the delta function}

=
1

2

∑

k

[Eωk
δ(ω − ωk) + E∗

ωk
δ(ω + ωk)].

By inserting this form of the electric field (taken in the frequency domain) into the polarization
density, one obtains the polarization density in the monochromatic form

P(n)(r, t) =
∑

ωσ≥0

Re[P(n)
ωσ

exp(−iωσt)],

with complex-valued Cartesian components at angular frequency ωσ given as

(P(n)
ωσ

)µ = 2ε0
∑

α1

· · ·
∑

αn

χ
(n)
µα1α2···αn

(−ωσ;ω1, ω2, . . . , ωn)(Eω1
)α1

(Eω2
)α2

· · · (Eωn
)αn

+ χ
(n)
µα1α2···αn

(−ωσ;ω2, ω1, . . . , ωn)(Eω2
)α1

(Eω1
)α2

· · · (Eωn
)αn

+ all other distinguishable terms

(8)

where, as previously, ωσ = ω1 + ω2 + . . . + ωn. In the right hand side of Eq. (8), the summation
is performed over all distinguishble terms, that is to say over all the possible combinations of
ω1, ω2, . . . , ωn that give rise to the particular ωσ. Within this respect, a certain frequency and
its negative counterpart are to be considered as distinct frequencies when appearing in the set.
In general, there are several possible combinations that give rise to a certain ωσ; for example
(ω, ω,−ω), (ω,−ω, ω), and (−ω, ω, ω) form the set of distinct combinations of optical frequencies
that give rise to optical Kerr-effect (a field dependent contribution to the polarization density at
ωσ = ω + ω − ω = ω).

A general conclusion of the form of Eq. (8), keeping the intrinsic permutation symmetry in
mind, is that only one term needs to be written, and the number of times this term appears
in the expression for the polarization density should consequently be equal to the number of
distinguishable combinations of ω1, ω2, . . . , ωn.
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Convention for description of nonlinear optical polarization

As a “recipe” in theoretical nonlinear optics, Butcher and Cotter provide a very useful convention
which is well worth to hold on to. For a superposition of monochromatic waves, and by invoking
the general property of the intrinsic permutation symmetry, the monochromatic form of the nth
order polarization density can be written as

(P (n)
ωσ

)µ = ε0
∑

α1

· · ·
∑

αn

∑

ω

K(−ωσ;ω1, . . . , ωn)χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn)(Eω1
)α1

· · · (Eωn
)αn

.

(9)
The first summations in Eq. (9), over α1, . . . , αn, is simply an explicit way of stating that the
Einstein convention of summation over repeated indices holds. The summation sign

∑
ω, however,

serves as a reminder that the expression that follows is to be summed over all distinct sets of
ω1, . . . , ωn. Because of the intrinsic permutation symmetry, the frequency arguments appearing in
Eq. (9) may be written in arbitrary order.

By “all distinct sets of ω1, . . . , ωn”, we here mean that the summation is to be performed, as
for example in the case of optical Kerr-effect, over the single set of nonlinear susceptibilities that
contribute to a certain angular frequency as (−ω;ω, ω,−ω) or (−ω;ω,−ω, ω) or (−ω;−ω, ω, ω).
In this example, each of the combinations are considered as distinct, and it is left as an arbitary
choice which one of these sets that are most convenient to use (this is simply a matter of choosing
notation, and does not by any means change the description of the interaction).

In Eq. (9), the degeneracy factor K is formally described as

K(−ωσ;ω1, . . . , ωn) = 2l+m−np

where
p = the number of distinct permutations of ω1, ω2, . . . , ω1,

n = the order of the nonlinearity,

m = the number of angular frequencies ωk that are zero, and

l =

{
1, if ωσ 6= 0,
0, otherwise.

In other words, m is the number of DC electric fields present, and l = 0 if the nonlinearity we are
analyzing gives a static, DC, polarization density, such as in the previously (in the spring model)
described case of optical rectification in the presence of second harmonic fields (SHG).

A list of frequently encountered nonlinear phenomena in nonlinear optics, including the degen-
eracy factors as conforming to the above convention, is given in Butcher and Cotters book, Table
2.1, on page 26.

Note on the complex representation of the optical field

Since the observable electric field of the light, in Butcher and Cotters notation taken as

E(r, t) =
1

2

∑

ωk≥0

[Eωk
exp(−iωkt) + E∗

ωk
exp(iωkt)],

is a real-valued quantity, it follows that negative frequencies in the complex notation should be
interpreted as the complex conjugate of the respective field component, or

E−ωk
= E∗

ωk
.

Example: Optical Kerr-effect

Assume a monochromatic optical wave (containing forward and/or backward propagating compo-
nents) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,

36



Lecture notes 3 Nonlinear Optics 5A5513 (2003)

with all spatial variation of the field contained in

Eω(z) = exE
x
ω(z) + eyE

y
ω(z) ∈ C

3.

Optical Kerr-effect is in isotropic media described by the third order susceptibility

χ
(3)
µαβγ(−ω;ω, ω,−ω),

with nonzero components of interest for the xy-polarized beam given in Appendix 3.3 of Butcher
and Cotters book as

χ(3)
xxxx = χ(3)

yyyy , χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.

(α, ω) 
 (β, ω)

}
= χ(3)

xyxy = χ(3)
yxyx, χ(3)

xyyx = χ(3)
yxxy ,

with
χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx.

The degeneracy factor K(−ω;ω, ω,−ω) is calculated as

K(−ω;ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From this set of nonzero susceptibilities, and using the calculated value of the degeneracy factor in
the convention of Butcher and Cotter, we hence have the third order electric polarization density

at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)], with

P(3)
ω =

∑

µ

eµ(P
(3)
ω )µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[
ε0

3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω;ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ωE

x
ωE

x
−ω + χ(3)

xyyxE
y
ωE

y
ωE

x
−ω + χ(3)

xyxyE
y
ωE

x
ωE

y
−ω + χ(3)

xxyyE
x
ωE

y
ωE

y
−ω]

+ ey[χ
(3)
yyyyE

y
ωE

y
ωE

y
−ω + χ(3)

yxxyE
x
ωE

x
ωE

y
−ω + χ(3)

yxyxE
x
ωE

y
ωE

x
−ω + χ(3)

yyxxE
y
ωE

x
ωE

x
−ω]}

= {Make use of E−ω = E∗
ω and relations χ(3)

xxyy = χ(3)
yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ω|Exω|2 + χ(3)

xyyxE
y
ω

2Ex∗ω + χ(3)
xyxy |Eyω|2Exω + χ(3)

xxyyE
x
ω|Eyω|2]

+ ey[χ
(3)
xxxxE

y
ω|Eyω|2 + χ(3)

xyyxE
x
ω

2Ey∗ω + χ(3)
xyxy |Exω|2Eyω + χ(3)

xxyyE
y
ω|Exω|2]}

= {Make use of intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|Exω|2 + 2χ(3)
xxyy |Eyω|2)Exω + (χ(3)

xxxx − 2χ(3)
xxyy)E

y
ω

2Ex∗ω

ey[(χ
(3)
xxxx|Eyω|2 + 2χ(3)

xxyy |Exω|2)Eyω + (χ(3)
xxxx − 2χ(3)

xxyy)E
x
ω

2Ey∗ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ

(3)
xxxx|Exω|2Exω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|2) contribution to the

refractive index (cf. Butcher and Cotter §6.3.1).
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Lecture 4

The Truth of polarization densitites

So far, we have performed the analysis in a theoretical framework that has been exclusively formu-
lated in terms of phenomenological models, such as the anharmonic oscillator and the phenomeno-
logically introduced polarization response function of the medium. In the real world application
of nonlinear optics, however, we should not restrict the theory just to phenomenological models,
but rather take advantage over the full quantum-mechanical framework of analysis of interaction
between light and matter.

y

z

x

V

r

r̂k,+Zke

r̂j ,−e

Figure 1. Schematic figure of the ensemble in the “small volume”.

In a small volume V (smaller than the wavelength of the light, to ensure that the natural spatial
variation of the light is not taken into account, but large enough in order to contain a sufficcient
number of molecules in order to ignore the quantum-mechanical fluctuations of the dipole moment
density), we consider the applied electric field to be homogeneous, and the electric polarization
density of the medium is then given as the expectation value of the electric dipole operator of the
ensemble of molecules divided by the volume, as

Pµ(r, t) = 〈Q̂µ〉/V ,

where the electric dipole operator of the ensemble contained in V can be written as a sum over all
electrons and nuclei as

Q̂ = −e
∑

j

r̂j

︸ ︷︷ ︸
electrons

+ e
∑

k

Zkr̂k

︸ ︷︷ ︸
nuclei

.

The expectation value 〈Q̂µ〉 can in principle be calculated directly from the compound, time-
dependent wave function of the ensemble of molecules in the small volume, considering any kind
of interaction between the molecules, which may be of an arbitrary composition. However, we will
here describe the interactions that take place in terms of the quantum mechanical density operator
of the ensemble, in which case the expectation value is calculated from the quantum mechanical
trace as

Pµ(r, t) = Tr[ρ̂(t)Q̂µ]/V.

41



Nonlinear Optics 5A5513 (2003) Lecture notes 4

Outline

Previously, in lecture one, we applied the mathematical tool of perturbation analysis to a classical
mechanical model of the dipole moment. This analysis will now essentially be repeated, but now
we will instead consider a perturbation series for the quantum mechanical density operator, with
the series being of the form

ρ̂(t) = ρ̂0︸︷︷︸
∼[E(t)]0

+ ρ̂1(t)︸ ︷︷ ︸
∼[E(t)]1

+ ρ̂2(t)︸ ︷︷ ︸
∼[E(t)]2

+ . . .+ ρ̂n(t)︸ ︷︷ ︸
∼[E(t)]n

+ . . .

As this perturbation series is inserted into the expression for the electric polarization density, we
will obtain a resulting series for the polarization density as

Pµ(r, t) =
∞∑

m=0

Tr[ρ̂m(t)Q̂µ]/V︸ ︷︷ ︸
=P

(m)
µ (r,t)

≈
n∑

m=0

P (m)
µ (r, t).

Quantum mechanics

We consider an ensemble of molecules, where each molecule may be different from the other
molecules of the ensemble, as well as being affected by some mutual interaction between the other
members of the ensemble. The Hamiltonian for this ensemble is generally taken as

Ĥ = Ĥ0 + ĤI(t),

where Ĥ0 is the Hamiltonian at thermal equilibrium, with no external forces present, and ĤI(t)
is the interaction Hamiltonial (in the Schrödinger picture), which for electric dipolar interactions
take the form:

ĤI(t) = −Q̂ · E(r, t) = −Q̂αEα(r, t),

where Q̂ is the electric dipole operator of the ensemble of molecules contained in the small volume V
(see Fig. 1). This expression may be compared with the all-classical electrostatic energy of an
electric dipole moment in a electric field, V = −p · E(r, t).

In order to provide a proper description of the interaction between light and matter at molecular
level, we must be means of some quantum mechanical description evaluate all properties of the
molecule, such as electric dipole moment, magnetic dipole moment, etc., by means of quantum
mechanical expectation values.

The description that we here will apply is by means of the density operator formalism, with
the density operator defined in terms of orthonormal set of wave functions |a〉 of the system as

ρ̂ =
∑

a

pa|a〉〈a| = ρ̂(t),

where pa are the normalized probabilities of the system to be in state |a〉, with

∑

a

pa = 1.

From the density operator, the expectation value of any arbitrary quantum mechanical operator
Ô of the ensemble is obtained from the quantum mechanical trace as

〈Ô〉 = Tr(ρ̂ Ô) =
∑

k

〈k|ρ̂ Ô|k〉.

The equation of motion for the density operator is given in terms of the Hamiltonian as

i~
dρ̂

dt
= [Ĥ, ρ̂] = Ĥρ̂− ρ̂Ĥ

= [Ĥ0, ρ̂] + [ĤI(t), ρ̂]

(1)
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In this context, the terminology of “equation of motion” can be pictured as

{
A change of the density
operator ρ̂(t) in time

}
⇔

{
A change of density

of states in time

}
⇔

{
Change of a general
property 〈Ô〉 in time

}

Whenever external forces are absent, that is to say, whenever the applied electromagnetic field is
zero, the equation of motion for the density operator takes the form

i~
dρ̂

dt
= [Ĥ0, ρ̂],

with the solution1

ρ̂(t) = ρ̂0 = η exp(−Ĥ0/kBT )
{

= η

∞∑

j=1

1

j!
(−Ĥ0/kBT )j

}

being the time-independent density operator at thermal equilibrium, with the normalization con-
stant η chosen so that Tr(ρ̂) = 1, i. e.,

η = 1/Tr[exp(−Ĥ0/kBT )].

Perturbation analysis of the density operator

The task is now o obtain a solution of the equation of motion (1) by means of a perturbation
series, in similar to the analysis performed for the anharmonic oscillator in the first lecture of this
course. The perturbation series is, in analogy to the mechanical spring oscillator under influence
of an electromagnetic field, taken as

ρ̂(t) = ρ̂0︸︷︷︸
∼[E(t)]0

+ ρ̂1(t)︸ ︷︷ ︸
∼[E(t)]1

+ ρ̂2(t)︸ ︷︷ ︸
∼[E(t)]2

+ . . .+ ρ̂n(t)︸ ︷︷ ︸
∼[E(t)]n

+ . . .

The boundary condition of the perturbation series is taken as the initial condition that sometime
in the past, the external forces has been absent, i. e.

ρ̂(−∞) = ρ̂0,

which, since the perturbation series is to be valid for all possible evolutions in time of the externally
applied electric field, leads to the boundary conditions for each individual term of the perturbation
series as

ρ̂j(−∞) = 0, j = 1, 2, . . .

By inserting the perturbation series for the density operator into the equation of motion (1), one
hence obtains

i~
d

dt
(ρ̂0 + ρ̂1(t) + ρ̂2(t) + . . .+ ρ̂n(t) + . . .) = [Ĥ0, ρ̂0 + ρ̂1(t) + ρ̂2(t) + . . .+ ρ̂n(t) + . . .]

+ [ĤI(t), ρ̂0 + ρ̂1(t) + ρ̂2(t) + . . .+ ρ̂n(t) + . . .],

1 For any macroscopic system, the probability that the system is in a particular energy eigenstate
ψn, with associated energy En, is given by the familiar Boltzmann distribution

pn = η exp(−En/kBT ),

where η is a normalization constant chosen so that
∑
n pn = 1, kB is the Boltzmann constant,

and T the absolute temperature. This probability distribution is in this course to be considered
as being an axiomatic fact, and the origin of this probability distribution can readily be obtained
from textbooks on thermodynamics or statistical mechanics.
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and by equating terms with equal power dependence of the applied electric field in the right and
left hand sides, one obtains the system of equations

i~
dρ̂0

dt
= [Ĥ0, ρ̂0],

i~
dρ̂1(t)

dt
= [Ĥ0, ρ̂1(t)] + [ĤI(t), ρ̂0],

i~
dρ̂2(t)

dt
= [Ĥ0, ρ̂2(t)] + [ĤI(t), ρ̂1(t)],

...

i~
dρ̂n(t)

dt
= [Ĥ0, ρ̂n(t)] + [ĤI(t), ρ̂n−1(t)],

...

(2)

for the variuos order terms of the perturbation series. In Eq. (2), we may immediately notice that
the first equation simply is the identity stating the thermal equilibrium condition for the zeroth
order term ρ̂0, while all other terms may be obtained by consecutively solve the equations of order
j = 1, 2, . . . , n, in that order.

The interaction picture

We will now turn our attention to the problem of actually solving the obtained system of equations
for the terms of the perturbation series for the density operator. In a classical picture, the obtained
equations are all of the form similar to

dρ

dt
= f(t)ρ+ g(t), (3)

for known functions f(t) and g(t). To solve these equations, we generally look for an integrating
factor I(t) satisfying

I(t)
dρ

dt
− I(t)f(t)ρ =

d

dt
[I(t)ρ]. (4)

By carrying out the differentiation in the right hand side of the equation, we find that the inte-
grating factor should satisfy

dI(t)

dt
= −I(t)f(t),

which is solved by2

I(t) = I(0) exp
[
−

∫ t

0

f(τ) dτ
]
.

The original ordinary differential equation (3) is hence solved by multiplying with the intagrating
factor I(t) and using the property (4) of the integrating factor, giving the equation

d

dt
[I(t)ρ] = I(t)g(t),

from which we hence obtain the solution for ρ(t) as

ρ(t) =
1

I(t)

∫ t

0

I(τ)g(τ) dτ.

From this preliminary discussion we may anticipate that equations of motion for the various order
perturbation terms of the density operator can be solved in a similar manner, using integrating

2 Butcher and Cotter have in their classical description of integrating factors chosen to put
I(0) = 1.
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factors. However, it should be kept in mind that we here are dealing with operators and not
classical quantities, and since we do not know if the integrating factor is to be multiplied from left
or right.

In order not to loose any generality, we may look for a set of two integrating factors V̂0(t)
and Û0(t), in operator sense, that we left and right multiply the unknown terms of the nth order
equation by, and we require these operators to have the effective impact

V̂0(t)

{
i~
dρ̂n(t)

dt
− [Ĥ0, ρ̂n(t)]

}
Û0(t) = i~

d

dt
[V̂0(t)ρ̂n(t)Û0(t)]. (5)

By carrying out the differentiation in the right-hand side, expanding the commutator in the left
hand side, and rearranging terms, one then obtains the equation

{
i~
d

dt
V̂0(t) + V̂0(t)Ĥ0

}
ρ̂n(t)Û0(t) + V̂0(t)ρ̂n(t)

{
i~
d

dt
Û0(t) − Ĥ0Û0(t)

}
= 0

for the operators V̂0(t) and Û0(t). This equation clearly is satisfied if both of the braced expressions
simultaneously are zero for all times, in other words, if the so-called time-development operators
V̂0(t) and Û0(t) are chosen to satisfy

i~
dV̂0(t)

dt
+ V̂0(t)Ĥ0 = 0,

i~
dÛ0(t)

dt
− Ĥ0Û0(t) = 0,

with solutions
Û0(t) = exp(−iĤ0t/~),

V̂0(t) = exp(iĤ0t/~) = Û0(−t).
In these expressions, the exponentials are to be regarded as being defined by their series expansion.
In particular, each term of the series expansion contains an operator part being a power of the
thermal equilibrium Hamiltonian Ĥ0, which commute with any of the other powers. We may easily
verify that the obtained solutions, in a strict operator sense, satisfy the relations

Û0(t)Û0(t
′) = Û0(t+ t′),

with, in particular, the corollary

Û0(t)Û0(−t) = Û0(0) = 1.

Let us now again turn our attention to the original equation of motion that was the starting point
for this discussion. By multiplying the nth order subequation of Eq. (2) with Û0(−t) from the left,
and multiplying with Û0(t) from the right, we by using the relation (5) obtain

i~
d

dt

{
Û0(−t)ρ̂n(t)Û0(t)

}
= Û0(−t)[ĤI(t), ρ̂n−1(t)]Û0(t),

which is integrated to yield the solution

Û0(−t)ρ̂n(t)Û0(t) =
1

i~

∫ t

−∞

Û0(−τ)[ĤI(τ), ρ̂n−1(τ)]Û0(τ) dτ,

where the lower limit of integration was fixed in accordance with the initial condition ρ̂n(−∞) = 0,
n = 1, 2, . . . . In some sense, we may consider the obtained solution as being the end point of this
discussion; however, we may simplify the expression somewhat by making a few notes on the
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properties of the time development operators. By expanding the right hand side of the solution,
and inserting Û0(τ)Û0(−τ) = 1 between ĤI(τ) and ρ̂n−1(τ) in the two terms, we obtain

Û0(−t)ρ̂n(t)Û0(t) =
1

i~

∫ t

−∞

Û0(−τ)[ĤI(τ)ρ̂n−1(τ) − ρ̂n−1(τ)ĤI(τ)]Û0(τ) dτ

=
1

i~

∫ t

−∞

Û0(−τ)ĤI(τ) Û0(τ)Û0(−τ)︸ ︷︷ ︸
=1

ρ̂n−1(τ)Û0(τ) dτ

− 1

i~

∫ t

−∞

Û0(−τ)ρ̂n−1(τ) Û0(τ)Û0(−τ)︸ ︷︷ ︸
=1

ĤI(τ)Û0(τ) dτ

=
1

i~

∫ t

−∞

[Û0(−τ)ĤI(τ)Û0(τ)︸ ︷︷ ︸
≡Ĥ′

I
(t)

, Û0(−τ)ρ̂n−1(τ)Û0(τ)︸ ︷︷ ︸
≡ρ̂′

n−1
(t)

] dτ,

and hence, by introducing the primed notation in the interaction picture for the quantum mechan-
ical operators,

ρ̂′n(t) = Û0(−t)ρ̂n(t)Û0(t),

Ĥ ′
I(t) = Û0(−t)ĤI(t)Û0(t),

the solutions of the system of equations for the terms of the perturbation series for the density
operator in the interaction picture take the simplified form

ρ̂′n(t) =
1

i~

∫ t

−∞

[Ĥ ′
I(τ), ρ̂

′
n−1(τ)] dτ, n = 1, 2, . . . ,

with the variuos order solutions expressed in the original Schrödinger picture by means of the
inverse transformation

ρ̂n(t) = Û0(t)ρ̂
′
n(t)Û0(−t).

The first order polarization density

With the quantum mechanical perturbative description of the interaction between light and matter
in fresh mind, we are now in the position of formulating the polarization density of the medium
from a quantum mechanical description. A minor note should though be made regarding the
Hamiltonian, which now is expressed in the interaction picture, and hence the electric dipolar
operator (since the electric field here is considered to be a macroscopic, classical quantity) is given
in the interaction picture as well,

Ĥ ′
I(τ) = Û0(−τ) [−Q̂αEα(τ)]︸ ︷︷ ︸

=ĤI(τ)

Û0(τ)

= −Û0(−τ)Q̂αÛ0(τ)Eα(τ)

= −Q̂α(τ)Eα(τ)

where Q̂α(τ) denotes the electric dipolar operator of the ensemble, taken in the interaction picture.
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By inserting the expression for the first order term of the perturbation series for the density
operator into the quantum mechanical trace of the first order electric polarization density of the
medium, one obtains

P (1)
µ (r, t) =

1

V
Tr[ρ̂1(t)Q̂µ]

=
1

V
Tr

[ (
Û0(t)

1

i~

∫ t

−∞

[Ĥ ′
I(τ), ρ̂0] dτ

︸ ︷︷ ︸
=ρ̂′1(t)

Û0(−t)
)

︸ ︷︷ ︸
=ρ̂1(t)

Q̂µ

]

=

{
Eµ(τ) is a classical field (omit space dependence r),

[Ĥ ′
I(τ), ρ̂0] = [−Q̂α(τ)Eα(τ), ρ̂0] = −Eα(τ)[Q̂α(τ), ρ̂0]

}

= − 1

V i~
Tr

{
Û0(t)

∫ t

−∞

Eα(τ)[Q̂α(τ), ρ̂0] dτ Û0(−t) Q̂µ
}

= {Pull out Eα(τ) and the integral outside the trace}

= − 1

V i~

∫ t

−∞

Eα(τ) Tr{Û0(t)[Q̂α(τ), ρ̂0]Û0(−t) Q̂µ} dτ

=

{
Express Eα(τ) in frequency domain, Eα(τ) =

∫ ∞

−∞

Eα(ω) exp(−iωτ) dω
}

= − 1

V i~

∫ ∞

−∞

∫ t

−∞

Eα(ω) Tr{Û0(t)[Q̂α(τ), ρ̂0]Û0(−t) Q̂µ} exp(−iωτ) dτ dω

= {Use exp(−iωτ) = exp(−iωt) exp[−iω(τ − t)]}

= − 1

V i~

∫ ∞

−∞

∫ t

−∞

Eα(ω) Tr{Û0(t)[Q̂α(τ), ρ̂0]Û0(−t) Q̂µ}

× exp[−iω(τ − t)] dτ exp(−iωt) dω

= ε0

∫ ∞

−∞

χ(1)
µα(−ω;ω)Eα(ω) exp(−iωt) dω,

where the first order (linear) electric susceptibility is defined as

χ(1)
µα(−ω;ω) = − 1

ε0V i~

∫ t

−∞

Tr{Û0(t)[Q̂α(τ), ρ̂0]Û0(−t)︸ ︷︷ ︸
=[Q̂α(τ−t),ρ̂0]

Q̂µ} exp[−iω(τ − t)] dτ

=

{
Expand the commutator and insert Û0(−t)Û0(t) ≡ 1
in middle of each of the terms, using [Û0(t), ρ̂0] = 0

⇒ Û0(t)[Q̂α(τ), ρ̂0]Û0(−t) = [Q̂α(τ − t), ρ̂0]

}

= − 1

ε0V i~

∫ t

−∞

Tr{[Q̂α(τ − t), ρ̂0]Q̂µ} exp[−iω(τ − t)] dτ

=

{
Change variable of integration τ ′ = τ − t;

∫ t

−∞

· · · dτ →
∫ 0

−∞

· · · dτ ′
}

= − 1

ε0V i~

∫ 0

−∞

Tr{[Q̂α(τ ′), ρ̂0]Q̂µ}︸ ︷︷ ︸
=Tr{ρ̂0[Q̂µ,Q̂α(τ ′)]}

exp(−iωτ ′) dτ ′

= {Cyclic permutation of the arguments in the trace}

= − 1

ε0V i~

∫ 0

−∞

Tr{ρ̂0[Q̂µ, Q̂α(τ)]} exp(−iωτ) dτ.
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Lecture 5

In the previous lecture, the quantum mechanical origin of the linear and nonlinear susceptibilities
was discussed. In particular, a perturbation analysis of the density operator was performed, and
the resulting system of equations was solved recursively for the nth order density operator ρ̂n(t)
in terms of ρ̂n−1(t), where the zeroth order term (independent of the applied electric field of the
light) is given by the Boltzmann distribution at thermal equilibrium.

So far we have obtained the linear optical properties of the medium, in terms of the first order
susceptibility tensor (of rank-two), and we will now proceed with the next order of interaction,
giving the second order electric susceptibility tensor (of rank three).

The second order polarization density

For the second order interaction, the corresponding term in the perturbation series of the density
operator in the interaction picture becomes1

ρ̂′2(t) =
1

i~

∫ t

−∞

[Ĥ ′
I(τ1), ρ̂

′
1(τ1)] dτ1

=
1

i~

∫ t

−∞

[Ĥ ′
I(τ1),

1

i~

∫ τ1

−∞

[Ĥ ′
I(τ2), ρ̂0] dτ2 ] dτ1

=
1

(i~)2

∫ t

−∞

∫ τ1

−∞

[Ĥ ′
I(τ1), [Ĥ

′
I(τ2), ρ̂0]] dτ2 dτ1

(1)

In order to simplify the expression for the second order susceptibility, we will in the following
analysis make use of a generalization of the cyclic perturbation of the terms in the commutator
inside the trace, as

Tr{[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Q̂µ} = Tr{ρ̂0[[Q̂µ, Q̂α(τ1)], Q̂β(τ2)]}. (2)

By inserting the expression for the second order term of the perturbation series for the density
operator into the quantum mechanical trace of the second order electric polarization density of the
medium, one obtains

P (2)
µ (r, t) =

1

V
Tr[ρ̂2(t)Q̂µ]

=
1

V
Tr

[ (
Û0(t)

1

(i~)2

∫ t

−∞

∫ τ1

−∞

[Ĥ ′
I(τ1), [Ĥ

′
I(τ2), ρ̂0]] dτ2 dτ1

︸ ︷︷ ︸
=ρ̂′2(t) (interaction picture)

Û0(−t)
)

︸ ︷︷ ︸
=ρ̂2(t) (Schrödinger picture)

Q̂µ

]

= {Eα(τ1) and Eα(τ1) are classical fields (omit space dependence r)}

=
1

V (i~)2
Tr

{
Û0(t)

∫ t

−∞

∫ τ1

−∞

[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Eα(τ1)Eβ(τ2) dτ2 dτ1Û0(−t) Q̂µ
}

= {Pull out Eα1
(τ1)Eα2

(τ2) and the integrals outside the trace}
1 It should be noticed that the form given in Eq. (1) not only applies to an ensemble of molecules,

of arbitrary composition, but also to any kind of level of approximation for the interaction, such as
the inclusion of magnetic dipolar interactions or electric quadrupolar interactions as well. These
interactions should (of course) be incorporated in the expression for the interaction Hamiltonian
Ĥ ′

I(τ), here described in the interaction picture.
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=
1

V (i~)2

∫ t

−∞

∫ τ1

−∞

Tr
{
Û0(t)[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Û0(−t) Q̂µ

}
Eα(τ1)Eβ(τ2) dτ2 dτ1.

In analogy with the results as obtained for the first order (linear) optical properties, now express
the term Eα1

(τ1)Eα2
(τ2) in the frequency domain, by using the Fourier identity

Eαk
(τk) =

∫ ∞

−∞

Eαk
(ωk) exp(−iωτk) dω,

which hence gives the second order polarization density expressed in terms of the electric field in
the frequency domain as

P (2)
µ (r, t) =

1

V (i~)2

∫ ∞

−∞

∫ ∞

−∞

∫ t

−∞

∫ τ1

−∞

Tr
{
Û0(t)[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Û0(−t) Q̂µ

}
Eα(ω1)Eβ(ω2)

× exp(−iω1τ1) exp(−iω2τ2) dτ2 dτ1 dω2 dω1

= {Use exp(−iωτ) = exp(−iωt) exp[−iω(τ − t)]}

=
1

V (i~)2

∫ ∞

−∞

∫ ∞

−∞

∫ t

−∞

∫ τ1

−∞

Tr
{
Û0(t)[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Û0(−t) Q̂µ

}
Eα(ω1)Eβ(ω2)

× exp[−iω1(τ1 − t) − iω2(τ2 − t)] dτ2 dτ1 exp[−i (ω1 + ω2)︸ ︷︷ ︸
=ωσ

t] dω2 dω1

= ε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
µαβ(−ωσ;ω1, ω2)Eα(ω1)Eβ(ω2) exp(−iωσt) dω2 dω1,

where the second order (quadratic) electric susceptibility is defined as

χ
(2)
µαβ(−ωσ;ω1, ω2)

=
1

ε0V (i~)2

∫ t

−∞

∫ τ1

−∞

Tr
{
Û0(t)[Q̂α(τ1), [Q̂β(τ2), ρ̂0]]Û0(−t) Q̂µ

}

× exp[−iω1(τ1 − t) − iω2(τ2 − t)] dτ2 dτ1

= {Make use of Eq. (2) and take τ ′1 = τ1 − t}
= . . .

=
1

ε0V (i~)2

∫ 0

−∞

∫ τ ′

1

−∞

Tr{ρ̂0[[Q̂µ, Q̂α(τ ′1)], Q̂β(τ
′
2)]} exp[−i(ω1τ

′
1 + ω2τ

′
2)] dτ

′
2 dτ

′
1.

This obtained expression for the second order electric susceptibility does not possess the property
of intrinsic permutation symmetry. However, by using the same arguments as discussed in the
analysis of the polarization response functions in lecture two, we can easily verify that this tensor
can be cast into a symmetric and antisymmetric part as

χ
(2)
µαβ(−ωσ;ω1, ω2) =

1

2
[χ

(2)
µαβ(−ωσ;ω1, ω2) + χ

(2)
µβα(−ωσ;ω2, ω1)]︸ ︷︷ ︸

symmetric part

+
1

2
[χ

(2)
µαβ(−ωσ;ω1, ω2) − χ

(2)
µβα(−ωσ;ω2, ω1)]︸ ︷︷ ︸

antisymmetric part

,

and since the antisymmetric part, again following the arguments for the second order polarization
response function, does not contribute to the polarization density, it is customary (in the Butcher
and Cotter convention as well as all other conventions in nonlinear optics) to cast the second order
susceptibility into the form

χ
(2)
µαβ(−ωσ;ω1, ω2)

=
1

ε0V (i~)2
1

2!
S

∫ 0

−∞

∫ τ ′

1

−∞

Tr{ρ̂0[[Q̂µ, Q̂α(τ ′1)], Q̂β(τ
′
2)]} exp[−i(ω1τ

′
1 + ω2τ

′
2)] dτ

′
2 dτ

′
1,

52



Lecture notes 5 Nonlinear Optics 5A5513 (2003)

where S, commonly called the symmetrizing operator, denotes that the expression that follows is
to be summed over the 2! = 2 possible pairwise permutations of (α, ω1) and (β, ω2), hence ensuring
that the second order susceptibility possesses the intrinsic permutation symmetry,

χ
(2)
µαβ(−ωσ;ω1, ω2) = χ

(2)
µβα(−ωσ;ω2, ω1).

Higher order polarization densities

The previously described principle of deriving the susceptibilities of first and second order are
straightforward to extend to the nth order interaction. In this case, we will make use of the
following generalization of Eq. (2),

Tr{[Q̂α1
(τ1), [Q̂α2

(τ2), . . . , [Q̂αn
(τn), ρ̂0]] . . .]Q̂µ}

= Tr{ρ̂0[. . . [[Q̂µ, Q̂α1
(τ1)], Q̂α2

(τ2)], . . . Q̂αn
(τn)]},

which, when applied in the evaluation of the expectation value of the electric dipole operator of
the ensemble, gives the nth order electric susceptibility as

χ
(n)
µα1···αn

(−ωσ;ω1, . . . , ωn)

=
1

ε0V (−i~)n
1

n!
S

∫ 0

−∞

∫ τ1

−∞

· · ·
∫ τn−1

−∞

Tr{ρ̂0[. . . [[Q̂µ, Q̂α1
(τ1)], Q̂α2

(τ2)], . . . Q̂αn
(τn)]}

× exp[−i(ω1τ1 + ω2τ2 + . . .+ ωnτn)] dτn · · · dτ2 dτ1,

where now the symmetrizing operator S indicates that the expression following it should be summed
over all the n! pairwise permutations of (α1, ω1), . . . , (αn, ωn).

It should be emphasized the symmetrizing operator S always implies summation over all the
n! pairwise permutations of (α1, ω1), . . . , (αn, ωn), irregardless of whether the permutations are
distinct or not. This is due to that eventually occuring degenerate permutations are taken care of
in the degeneracy coefficient K(−ωσ;ω1, . . . , ωn) in Butcher and Cotters convention, as described
in lecture three and in additional notes that has been handed out in lecture four.
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Lecture 6

Assembly of independent molecules

So far the description of the interaction between light and matter has been in a very general form,
where it was assumed merely that the interaction is local, and in the electric dipolar approximation,
where magnetic dipolar and electric quadrupolar interactions (as well as higher order terms) were
neglected. The ensemble of molecules has so far no constraints in terms of composition or mutual
interaction, and the electric dipolar operator is so far taken for the whole ensemble of molecules,
rather than as the dipole operator for the individual molecules.

y

z

x

V

r

Figure 1. The ensemble of identical, similarly oriented, and mutually independent molecules.

For many practical applications, however, the obtained general form is somewhat inconvenient
when it comes to the numerical evaluation of the susceptibilities, since tables of wave functions,
transition frequencies and their corresponding electric dipole moments etc. often are tabulated
exclusively for the individual molecules themselves. Thus, we will now apply the obtained general
theory to an ensemble of identical molecules, making a transition from the wave function and
electric dipole operator of the whole ensemble to the wave function and electric dipole operator
of the individual molecule, and find an explicit form of the electric susceptibilities in terms of the
quantum mechanical matrix elements of the molecular dipole operator.

We will now apply three assumptions of the ensemble of molecules, which introduce a significant
simplification to the task of expressing the susceptibilities and macroscopic polarization density in
terms of the individual molecular properties:

1. The molecules of the ensemble are all identical.
2. The molecules of the ensemble are mutually non-interacting.
3. The molecules of the ensemble are identically oriented.

From a wave functional approach, it is straightforward to make the transition from the de-
scription of the ensemble down to the molecular level in a strict quantum mechanical perspective
(as shown in Butcher and Cotters book). However, from a practical engineering point of view,
the results are quite intuitively derived if we make the following observations, which immediately
follow from the assumptions listed above:

• The positions of the individual molecules does not affect the electric dipole moment of the
whole ensemble in V , if we neglect the mutual interaction between the molecules. (This holds
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only if the molecules are neutrally charged, since they otherwise could build up a total electric
dipole moment of the ensemble.)

• Since the mutual interaction between the molecules is neglected, we may just as well con-
sider the individual molecules as constituting a set of “sub-ensembles” of the general ensemble
picture. In this picture, all quantum mechanical expectation values, involved commutators,
matrix elements, etc., should be considered for each subensemble instead, and the macroscopic
polarization density will in this case become

P(r, t) =

{
the number of molecules

within the volume V

}
×

{
the expectation value of the
molecular dipole operator

}

{the volume V } .

y

z

x

V

r

Figure 2. The general ensemble seen as an ensemble of identical mono-molecular sub-ensembles.

Assuming there are M mutually non-interacting and similarly oriented molecules in the volume
V , the macroscopic polarization density of the medium can be written as

P(r, t) =
1

V
〈Q̂〉 =

1

V
〈−e

∑

j

r̂j

︸ ︷︷ ︸
electrons

+ e
∑

k

Zkr̂k

︸ ︷︷ ︸
nuclei

〉

= {arrange terms as sum over the molecules of the ensemble}

=
1

V
〈
M∑

m=1

(
−e

∑

j

r̂
(m)
j

︸ ︷︷ ︸
electrons

+ e
∑

k

Z
(m)
k r̂

(m)
k

︸ ︷︷ ︸
nuclei

)

︸ ︷︷ ︸
molecular elec. dipole operator, er̂(m)

〉

︸ ︷︷ ︸
electric dipole moment of ensemble

=
1

V
〈
M∑

m=1

er̂(m)〉

= {the molecules are mutually noninteracting}

=
1

V

M∑

m=1

〈er̂(m)〉

= {the molecules are identical and similarly oriented}

=
1

V

M∑

m=1

〈er̂〉

= N〈er̂〉
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where N = M/V is the number of molecules per unit volume, and

〈er̂〉 = Tr[%̂(t)er̂]

is the expectation value of the mono-molecular electric dipole operator, with %̂(t) (that is to say,
ρ̂(t) with a “kink”1 to indicate the difference to the density operator of the general ensemble) is
the molecular density operator. Notice that the form P(r, t) = N〈er̂〉 is identical to the previous
form for the general ensemble, though with the factor 1/V replaced by N = M/V , and with the
electric dipole operator Q̂α of the ensemble replaced by the molecular dipole moment operator er̂α.

When making this transition, the condition that the molecules are mutually independent is
simply a statement that we locally assume the superposition principle of the properties of the
molecules (wave functions, electric dipole moments, etc.) to hold.

Going in the limit of non-interacting molecules, we may picture the situation as in Fig. 2,
with each molecule defining a sub-ensemble, which we are free to choose as our “small volume” of
charged particles. As long as we do not make any claim to determine the exact individual positions
of the charged particles together with their respective momentum (or any other pair of canonical
variables which would violate the Heisenberg uncertainty relation), this is a perfectly valid picture,
which provides the statistical expectation values of any observable property of the medium as M/V
times the average statistical molecular observations.

The previously described operators of a general ensemble of charged particles should in this case
be replaced by their corresponding mono-molecular equivalents, as listed in the following table.

General Molecular
ensemble representation

Q̂µ → er̂µ (Electric dipole operator)
ρ̂0 → %̂0 (Density operator of thermal equilibrium)
ρ̂n(t) → %̂n(t) (nth order term of density operator)
Ĥ0 → Ĥ0 (Hamiltonian of thermal equilibrium)
1/V → N = M/V (Number density of molecules)
ρ0(a) → %0(a) (Molecular population density at state |a〉)

Whenever an operator is expressed in the interaction picture, we should keep in mind that the
corresponding time development operators Û0(t), which originally were expressed in terms of the
thermal equilibrium Hamiltonian Ĥ0 of the ensemble, now should be expressed in terms of the
mono-molecular thermal equilibrium Hamiltonian Ĥ0.

The matrix elements of the mono-molecular electric dipole operator, taken in the interaction
picture, become

〈a|er̂α(t)|b〉 = 〈a|Û0(−t)er̂αÛ0(t)|b〉
= {the closure principle, B.&C. Eq. (3.11), [ÔÔ′]ab =

∑

k

OakOkb}

=
∑

k

∑

l

〈a|Û0(−t)|k〉〈k|er̂α|l〉〈l|Û0(t)|b〉

= {energy representation, B.&C. Eq. (4.54), [Û0(t)]ab = exp(−iEat/~)δab}
=

∑

k

∑

l

exp(−iEa(−t)/~)δak〈k|er̂α|l〉 exp(−iElt/~)δlb

= 〈a|er̂α|b〉 exp[i (Ea − Eb)t/~︸ ︷︷ ︸
≡Ωabt

]

= 〈a|er̂α|b〉 exp(iΩabt),

(3)

1 kink n. 1. a sharp twist or bend in a wire, rope, hair, etc. [Collins Concise Dictionary,
Harper-Collins (1995)].
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where Ωab = (Ea−Eb)/~ is the molecular transition frequency between the molecular states |a〉 and
|b〉. We may thus, at least in some sense, interpret the interaction picture for the matrix elements
of the molecular operators as an out-separation of the naturally occurring transition frequencies
associated with a change from state |a〉 to |b〉 of the molecule.

First order electric susceptibility

From the general form of the first order (linear) electric susceptibility, as derived in the previous
lecture, one obtains

χ(1)
µα(−ω;ω) = − N

ε0i~

∫ 0

−∞

Tr{%̂0[er̂µ, er̂α(τ)]} exp(−iωτ) dτ

= −Ne
2

ε0i~

∫ 0

−∞

∑

a

〈a|%̂0(r̂µr̂α(τ) − r̂α(τ)r̂µ)|a〉 exp(−iωτ) dτ

= {the closure principle}

= −Ne
2

ε0i~

∫ 0

−∞

∑

a

∑

k

〈a|%̂0|k〉〈k|r̂µr̂α(τ) − r̂α(τ)r̂µ|a〉 exp(−iωτ) dτ

= {use that 〈a|%̂0|k〉 = %0(a)δak}

= −Ne
2

ε0i~

∫ 0

−∞

∑

a

%0(a)
[
〈a|r̂µr̂α(τ)|a〉 − 〈a|r̂α(τ)r̂µ|a〉

]
exp(−iωτ) dτ

= {the closure principle again}

= −Ne
2

ε0i~

∫ 0

−∞

∑

a

%0(a)
∑

b

[
〈a|r̂µ|b〉〈b|r̂α(τ)|a〉 − 〈a|r̂α(τ)|b〉〈b|r̂µ|a〉

]
exp(−iωτ) dτ

= {Use results of Eq. (3) and shorthand notation 〈a|r̂α|b〉 = rαab}

= −Ne
2

ε0i~

∑

a

%0(a)
∑

b

∫ 0

−∞

[
rµabr

α
ba exp(iΩbaτ) − rαabr

µ
ba exp(−iΩbaτ)

]
exp(−iωτ) dτ

= {evaluate integral

∫ 0

−∞

exp(iCτ) dτ → 1/(iC)}

= −Ne
2

ε0i~

∑

a

%0(a)
∑

b

[ rµabr
α
ba

i(Ωba − ω)
− rαabr

µ
ba

−i(Ωba + ω)

]

=
Ne2

ε0~

∑

a

%0(a)
∑

b

( rµabr
α
ba

Ωba − ω
+

rαabr
µ
ba

Ωba + ω

)
.

This result, which was derived entirely under the assumption that all resonances of the medium
are located far away from the angular frequency of the light, possesses a new type of symmetry,
which can be seen if we make the interchange

(−ω, µ) � (ω, α),

which by using the above result for the linear susceptibility gives

χ(1)
αµ(ω;−ω) =

Ne2

ε0~

∑

a

%0(a)
∑

b

( rαabr
µ
ba

Ωba + ω
+

rµabr
α
ba

Ωba − ω

)

= {change order of appearance of the terms}

=
Ne2

ε0~

∑

a

%0(a)
∑

b

( rµabr
α
ba

Ωba − ω
+

rαabr
µ
ba

Ωba + ω

)

= χ(1)
µα(−ω;ω),

which is a signature of the overall permutation symmetry that applies to nonresonant interactions.
With this result, the reason for the peculiar notation with “(−ω;ω)” should be all clear, namely
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that it serves as an explicit way of notation of the overall permutation symmetry, whenever it
applies.

It should be noticed that while intrinsic permutation symmetry is a general property that
solely applies to nonlinear optical interactions, the overall permutation symmetry applies to linear
interactions as well.

Second order electric susceptibility

In similar to the linear electric susceptibility, starting from the general form of the second order
(quadratic) electric susceptibility, one obtains

χ
(2)
µαβ(−ωσ;ω1, ω2)

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

Tr{%̂0[[r̂µ, r̂α(τ1)], r̂β(τ2)]} exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

〈a|%̂0[ [r̂µ, r̂α(τ1)]︸ ︷︷ ︸
r̂µr̂α(τ1)−r̂α(τ1)r̂µ

, r̂β(τ2)]|a〉 exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {expand the commutator}

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

(
〈a|%̂0r̂µr̂α(τ1)r̂β(τ2)|a〉 − 〈a|%̂0r̂α(τ1)r̂µr̂β(τ2)|a〉

− 〈a|%̂0r̂β(τ2)r̂µr̂α(τ1)|a〉 + 〈a|%̂0r̂β(τ2)r̂α(τ1)r̂µ|a〉
)

exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {apply the closure principle and Eq. (3)}

=
Ne3

ε0(i~)2
1

2!
S

∫ 0

−∞

∫ τ1

−∞

∑

a

∑

k

∑

b

∑

c

(
〈a|%̂0|k〉〈k|r̂µ|b〉〈b|r̂α(τ1)|b〉〈c|r̂β(τ2)|a〉

− 〈a|%̂0|k〉〈k|r̂α(τ1)|b〉〈b|r̂µ|c〉〈c|r̂β(τ2)|a〉
− 〈a|%̂0|k〉〈k|r̂β(τ2)|b〉〈b|r̂µ|c〉〈c|r̂α(τ1)|a〉

+ 〈a|%̂0|k〉〈k|r̂β(τ2)|b〉〈b|r̂α(τ1)|c〉〈c|r̂µ|a〉
)

exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

= {use that 〈a|%̂0|k〉 = %0(a)δak and apply Eq. (3)}

=
Ne3

ε0(i~)2
1

2!
S

∑

a

%0(a)
∑

b

∑

c

∫ 0

−∞

∫ τ1

−∞

{
rµabr

α
bcr

β
ca exp[i(Ωbcτ1 + Ωcaτ2)]

− rαabr
µ
bcr

β
ca exp[i(Ωabτ1 + Ωcaτ2)] − rβabr

µ
bcr

α
ca exp[i(Ωcaτ1 + Ωabτ2)]

+ rβabr
α
bcr

µ
ca exp[i(Ωbcτ1 + Ωabτ2)]

}
exp[−i(ω1τ1 + ω2τ2)] dτ2 dτ1

=
Ne3

ε0(i~)2
1

2!
S

∑

a

%0(a)
∑

b

∑

c

∫ 0

−∞

{ rµabr
α
bcr

β
ca

i(Ωca − ω2)
exp[i (Ωbc + Ωca)︸ ︷︷ ︸

=Ωba

τ1]

− rαabr
µ
bcr

β
ca

i(Ωca − ω2)
exp[i (Ωab + Ωca)︸ ︷︷ ︸

=Ωcb

τ1] −
rβabr

µ
bcr

α
ca

i(Ωab − ω2)
exp[i (Ωca + Ωab)︸ ︷︷ ︸

=Ωcb

τ1)]

+
rβabr

α
bcr

µ
ca

i(Ωab − ω2)
exp[i (Ωbc + Ωab)︸ ︷︷ ︸

=−Ωca

τ1]
}

exp[−i (ω1 + ω2)︸ ︷︷ ︸
=ωσ

τ1] dτ1

=
Ne3

ε0(i~)2
1

2!
S

∑

a

%0(a)
∑

b

∑

c

{
− rµabr

α
bcr

β
ca

(Ωca − ω2)(Ωba − ωσ)
+

rαabr
µ
bcr

β
ca

(Ωca − ω2)(Ωcb − ωσ)

+
rβabr

µ
bcr

α
ca

(Ωab − ω2)(Ωcb − ωσ)
− rβabr

α
bcr

µ
ca

(Ωab − ω2)(−Ωca − ωσ)

}

. . . continued on next page . . .
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. . . continuing from previous page . . .

=
Ne3

ε0~2

1

2!
S

∑

a

%0(a)
∑

b

∑

c

{ rµabr
α
bcr

β
ca

(Ωac + ω2)(Ωab + ωσ)
− rαabr

µ
bcr

β
ca

(Ωac + ω2)(Ωbc + ωσ)

− rβabr
µ
bcr

α
ca

(Ωba + ω2)(Ωbc + ωσ)
+

rβabr
α
bcr

µ
ca

(Ωba + ω2)(Ωca + ωσ)

}
.

Now it is easily seen that if we, for example, interchange

(−ωσ, µ) 
 (ω2, β),

one obtains

χ
(2)
βαµ(ω2;ω1,−ωσ)

=
Ne3

ε0~2

1

2!
S

∑

a

%0(a)
∑

b

∑

c

{ rβabr
α
bcr

µ
ca

(Ωac − ωσ)(Ωab − ω2)
− rαabr

β
bcr

µ
ca

(Ωac − ωσ)(Ωbc − ω2)

− rµabr
β
bcr

α
ca

(Ωba − ωσ)(Ωbc − ω2)
+

rµabr
α
bcr

β
ca

(Ωba − ωσ)(Ωca − ω2)

}

= {use Ωab = −Ωba, etc.}

=
Ne3

ε0~2

1

2!
S

∑

a

%0(a)
∑

b

∑

c

{ rβabr
α
bcr

µ
ca

(Ωca + ωσ)(Ωba + ω2)︸ ︷︷ ︸
identify 4th term

− rαabr
β
bcr

µ
ca

(Ωca + ωσ)(Ωcb + ω2)

− rµabr
β
bcr

α
ca

(Ωab + ωσ)(Ωcb + ω2)
+

rµabr
α
bcr

β
ca

(Ωab + ωσ)(Ωac + ω2)︸ ︷︷ ︸
identify 1st term

}

= {interchange dummy indices a→ c→ b→ a in 2nd term}
= {interchange dummy indices a→ b→ c→ a in 3rd term}

=
Ne3

ε0~2

1

2!
S

∑

a

%0(a)
∑

b

∑

c

{ rβabr
α
bcr

µ
ca

(Ωca + ωσ)(Ωba + ω2)︸ ︷︷ ︸
identify 4th term

− rαcar
β
abr

µ
bc

(Ωbc + ωσ)(Ωba + ω2)︸ ︷︷ ︸
identify as 3rd term

− rµbcr
β
car

α
ab

(Ωbc + ωσ)(Ωac + ω2)︸ ︷︷ ︸
identify as 2nd term

+
rµabr

α
bcr

β
ca

(Ωab + ωσ)(Ωac + ω2)︸ ︷︷ ︸
identify 1st term

}

= χ
(2)
µβα(−ωσ;ω1, ω2),

that is to say, the second order susceptibility is left invariant under any of the (2+1)! = 6 possible
pairwise permutations of (−ωσ, µ), (ω1, α), and (ω2, β); this is the overall permutation symmetry
for the second order susceptibility, and applies whenever the interaction is moved far away from
any resonance.

We recapitulate that when deriving the form of the nonlinear susceptibilities that lead to
intrinsic permutation symmetry, either in terms of polarization response functions in time domain
or in terms of a mechanical spring model, nothing actually had to be stated regarding the nature
of interaction. This is rather different from what we just obtained for the overall permutation
symmetry, as being a signature of a nonresonant interaction between the light and matter, and
this symmetry cannot (in contrary to the intrinsic permutation symmetry) be expressed unless the
origin of interaction is considered.2

2 It should though be noticed that the derivation of the susceptibilities still may be performed
within a mechanical spring model, as long as the resonance frequencies of the oscillator are removed
far from the angular frequencies of the present light.
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Lecture 7

So far, this course has mainly dealt with the dependence of the angular frequency of the light
and molecular interaction strength in the description of nonlinear optics. In this lecture, we will
now end this development of the description of interaction between light and matter, in favour
of more engineering practical techniques for describing the theory of an experimental setup in a
certain geometry, and for reducing the number of necessary tensor elements needed for describing
a mediumof a certain crystallographic point-symmetry group.

Motivation for analysis of susceptibilities in rotated coordinate systems

For a given experimental setup, it is often convenient to introduce some kind of reference coordinate
frame, in which one for example express the wave propagation as a linear motion along some
Cartesian coordinate axis. This laboratory reference frame might be chosen, for example, with
the z-axis coinciding with the direction of propagation of the optical wave at the laser output, in
the phase-matched direction of an optical parametric oscillator (OPO), after some beam aligning
mirror, etc.

In some cases, it might be so that this laboratory frame coincide with the natural coordinate
frame1 of the nonlinear crystal, in which case the coordinate indices of the linear as well as nonlinear
susceptibility tensors take the same values as the coordinates of the laboratory frame. However, we
cannot generally assume the coordinate frame of the crystal to coincide with a conveniently chosen
laboratory reference frame, and this implies that we generally should be prepared to spatially
transform the susceptibility tensors to arbitrarily rotated coordinate frames.

Having formulated these spatial transformation rules, we will also directly benefit in another
aspect of the description of nonlinear optical interactions, namely the reduction of the suscepti-
bility tensors to the minimal set of nonzero elements. This is typically performed by using the
knowledge of the so called crystallographic point ymmetry group of the medium, which essentially
is a description of the spatial operations (rotations, inversions etc.) that define the symmetry
operations of the medium.

As a particular example of the applicability of the spatial transformation rules (which we
soon will formulate) is illustrated in Figs. 1 and 2. In Fig. 1, the procedure for analysis of sum
or frequency difference generation is outlined. Starting from the description of the linear and
nonlinear susceptibility tensors of the medium, as we previously have derived the relations from
a first principle approach in Lectures 1–6, we obtain the expressions for the electric polarization
densities of the medium as functions of the applied electric fields of the optical wave inside the
nonlinear crystal. These polarization densities are then inserted into the wave equation, which
basically is derived from Maxwell’s equations of motion for the electromagnetic field. In the wave
equation, the polarization densities act as source terms in an otherwise homogeneous equation for
the motion of the electromagnetic field in vacuum.

As the wave equation is solved for the electric field, here taken in complex notation, we have
solved for the general output from the crystal, and we can then design the experiment in such a
way that an optimal efficiency is obtained.

1 The natural coordinate frame of the crystal is often chosen such that some particular symmetry
axis is chosen as one of the Cartesian axes.
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x′

y′
z′

Laboratory frame (x′, y′, z′)

x

y

z

Crystal frame (x, y, z)

h̄ω1

h̄ω2

h̄ω1

h̄ω2

h̄ω3 = h̄(ω1 + ω2)

h̄ω4 = h̄(ω1 − ω2)

χ
(1)
x′x′ = χ

(1)
xx , χ

(2)
x′y′z′ = χ

(2)
xyz, etc.

(Properties of the medium)

⇒ P
(1)
ωk = ε0exχ

(1)
xx (−ωk;ωk)(ex · Eωk

), etc.

P
(2)
ω3 = ε0exχ

(2)
xyz(−ω3;ω1, ω2)(ey · Eω1)(ez · Eω2)

+ε0eyχ
(2)
yxx(−ω3;ω1, ω2)(ex · Eω1)(ex · Eω2), etc.

P
(2)
ω4 = ε0exχ

(2)
xyz(−ω4;ω1,−ω2)(ey · Eω1)(ez · E∗

ω2
)

+ε0eyχ
(2)
yxx(−ω4;ω1,−ω2)(ex · Eω1)(ex · E∗

ω2
), etc.

⇒ d2Eωk

dz′2 +
ω2

k

c2 Eωk
= −µ0ω

2(P
(1)
ωk + P

(2)
ωk ), k = 1, 2, 3, 4

(Nonlinear wave equation inside crystal)

⇒ Eωk
= Eωk

(z), k = 1, 2, 3, 4

(Solution for optical fields)

EI(r, t) =
∑2
k=1 Re[Eωk

exp(−iωkt)] ET(r, t) =
∑4
k=1 Re[Eωk

exp(−iωkt)]

Figure 1. The setup in which the orientation of the laboratory and crystal frames coincide.

In Fig. 1, this outline is illustrated for the case where the natural coordinate frame of the crystal
happens to coincide with the coordinate system of the laboratory frame. In this case, all ele-
ments of the susceptibilities taken in the coordinate frame of the crystal (which naturally is the
coordinate frame in which we can obtain tabulated sets of tensor elements) will coincide with the
elements as taken in the laboratory frame, and the design and interpretation of the experiment is
straightforward.

However, this setup clearly constitutes a rare case, since we have infinitely many other possibil-
ities of orienting the crystal relative the laboratory coordinate frame. Sometimes the experiment is
designed with the crystal and laboratory frames coinciding, in order to simplify the interpretation
of an experiment, and sometimes it is instead necessary to rotate the crytal, in order to achieve
phase-matching of nonlinear process, as is the case in for example most schemes for second-order
optical parametric amplification.

If now the crystal frame is rotated with respect to the laboratory frame, as shown in Fig. 2, we
should make up our mind in which system we would like the wave propagation to be analyzed. In
some cases, it might be so that the output of the experimental setup is most easily interpreted in
the coordinate frame of the crystal, but in most cases, we have a fixed laboratory frame (fixed by
the orientation of the laser, positions of mirrors, etc.) in which we would like to express the wave
propagation and interaction between light and matter.

66



Lecture notes 7 Nonlinear Optics 5A5513 (2003)

x′

y′
z′

Laboratory frame (x′, y′, z′)

x

y

z

Crystal frame (x, y, z) [rotated relative (x′, y′, z′)]

h̄ω1

h̄ω2

(?
)

h̄ω
1

(?)h̄ω2

(?)

h̄ω
3 = h̄(ω

1 + ω
2)

(?)

h̄ω
4 =
h̄(ω

1 −
ω

2 )

χ
(1)
x′x′ 6= χ

(1)
xx , χ

(2)
x′y′z′ 6= χ

(2)
xyz, etc.

(Properties of the medium)

⇒ P
(1)
ωk =?

P
(2)
ω3 =?

P
(2)
ω4 =?

⇒ d2Eωk

dz′2 +
ω2

k

c2 Eωk
= −µ0ω

2(P
(1)
ωk + P

(2)
ωk ) =? k = 1, 2, 3, 4

(Nonlinear wave equation inside crystal)

⇒ Eωk
=?

(Solution for optical fields)

EI(r, t) =
∑2
k=1 Re[Eωk

exp(−iωkt)]

Figure 2. The setup in which the crystal frame is rotated relative the laboratory frame.

In Fig. 2, we would, in order to express the nonlinear process in the laboratory frame, like to

obtain the naturally appearing susceptibilities χ
(2)
xyz , χ

(2)
xxx, etc., in the laboratory frame instead, as

χ
(2)
x′y′z′ , χ

(2)
x′x′x′ , etc.

Just to summarize, why are then the transformation rules and spatial symmetries of the meduim
so important?

• Hard to make physical conclusions about generated optical fields unless orientation of the
laboratory and crystal frames coincide.

• Spatial symmetries often significantly simplifies the wave propagation problem (by choosing a
suitable polarization state and direction of propagation of the light, etc.).

• Useful for reducing the number of necessary elements of the susceptibility tensors (using Neu-
mann’s principle).

Optical properties in rotated coordinate frames

Consider two coordinate systems described by Cartesian coordinates xα and x′α, respectively. The
coordinate systems are rotated with respect to each other, and the relation between the coordinates
are described by the [3 × 3] transformation matrix Rab as

x′ = Rx ⇔ x′α = Rαβxβ , [B.& C. (5.40)]

where x = (x, y, z)T and x′ = (x′, y′, z′)T are column vectors. The inverse transformation between
the coordinate systems is similarly given as

x = R−1x′ ⇔ xβ = Rαβx
′
α. [B.& C. (5.41)]
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x

y

z

x′

y′

z′

Figure 3. Illustration of proper rotation of the crystal frame (x, y, z) relative to the laboratory
reference frame (x′, y′, z′), by means of x′α = Rαβxβ with det (R) = 1.

x
y

z

7−→

(a)

x′
y′

z′

x
y

z

7−→

(b)

x′
y′

z′

Figure 4. The coordinate transformations (a) x = (x, y, z) 7→ x′ = (−x,−y, z), constituting a
proper rotation around the z-axis, and (b) the space inversion x 7→ x′ = −x, an improper rotation
corresponding to, for example, a rotation around the z-axis followed by an inversion in the xy-plane.

We should notice that there are two types of rotations that are encountered as transformations:

• Proper rotations, for which det(R) = 1. (Righthanded systems keep being righthanded, and
lefthanded systems keep being lefthanded.)

• Improper rotations, for which det(R) = −1. (Righthanded systems are transformed into left-
handed systems, and vice versa.)

The electric field E(r, t) and electric polarization density P(r, t) are both polar quantities that
transform in the same way as regular Cartesian coordinates, and hence we have descriptions of
these quantities in coordinate systems (x, y, z) and (x′, y′, z′) related to each other as

E′
µ(r, t) = RµuEu(r, t) ⇔ Eu(r, t) = RµuE

′
µ(r, t),

and

P ′
µ(r, t) = RµuPu(r, t) ⇔ Pu(r, t) = RµuP

′
µ(r, t),

respectively. Using these transformation rules, we will now derive the form of the susceptibilities
in rotated coordinate frames.

First order polarization density in rotated coordinate frames

From the transformation rule for the electric polarization density above, using the standard form as
we previously have expressed the electric field dependence, we have for the first order polarization
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density in the primed coordinate system

P (1)
µ

′(r, t) = RµuP
(1)
u (r, t)

= Rµuε0

∫ ∞

−∞

χ(1)
ua (−ω;ω)Ea(ω) exp(−iωt) dω

= Rµuε0

∫ ∞

−∞

χ(1)
ua (−ω;ω)RαaE

′
α(ω) exp(−iωt) dω

= ε0

∫ ∞

−∞

χ(1)
µα

′(−ω;ω)E′
α(ω) exp(−iωt) dω

where
χ(1)
µα

′(−ω;ω) = RµuRαaχ
(1)
ua (−ω;ω) [B.& C. (5.45)]

is the linear electric susceptibility taken in the primed coordinate system.

Second order polarization density in rotated coordinate frames

Similarly, we have the second order polarization density in the primed coordinate system as

P (2)
µ

′(r, t) = RµuP
(2)
u (r, t)

= Rµuε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
uab(−ωσ;ω1, ω2)Ea(ω1)Eb(ω2) exp[−i(ω1 + ω1)t] dω2 dω1

= Rµuε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
uab(−ωσ;ω1, ω2)RαaE

′
α(ω1)RβbE

′
β(ω2) exp[−i(ω1 + ω1)t] dω2 dω1

= ε0

∫ ∞

−∞

∫ ∞

−∞

χ
(2)
µαβ

′(−ωσ;ω1, ω2)E
′
α(ω1)E

′
β(ω2) exp[−i(ω1 + ω1)t] dω2 dω1

where
χ

(2)
µαβ

′(−ωσ;ω1, ω2) = RµuRαaRβbχ
(2)
uab(−ωσ;ω1, ω2) [B.& C. (5.46)]

is the second order electric susceptibility taken in the primed coordinate system.

Higher order polarization densities in rotated coordinate frames

In a manner completely analogous to the second order susceptibility, the transformation rule be-
tween the primed and unprimed coordinate systems can be obtained for the nth order elements of
the electric susceptibility tensor as

χ
(n)
µα1···αn

′(−ωσ;ω1, . . . , ωn) = RµuRα1a1
· · ·Rαnan

χ
(n)
ua1···an

(−ωσ;ω1, . . . , ωn). [B.& C. (5.47)]

Crystallographic point symmetry groups

Typically, a particular point symmetry group of the medium can be described by the generating
matrices that describe the minimal set of transformation matrices (describing a set of symmetry
operations) that will be necessary for the reduction of the constitutive tensors. Two systems are
widely used for the description of point symmetry groups:2

• The International system, e. g. 4̄3m, m3m, 422, etc.
• The Schönflies system, e. g. Td, Oh, D4, etc.

The crystallographic point symmetry groups may contain any of the following symmetry oper-
ations:

1. Rotations through integral multiples of 2π/n about some axis. The axis is called the n-fold
rotation axis. It is in solid state physics shown [1–3] that a Bravais lattice can contain only 2-,
3-, 4-, or 6-fold axes, and since the crystallographic point symmetry groups are contained in the
Bravais lattice point groups, they too can only have these axes.

2 C. f. Table 2 of the handed out Hartmann’s An Introduction to Crystal Physics.
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2. Rotation-reflections. Even when a rotation through 2π/n is not a symmetry element,
sometimes such a rotation followed by a reflection in a plane perpendicular to the axis may be a
symmetry operation. The axis is then called an n-fold rotation-reflection axis. For example, the
groups S6 and S4 have 6- and 4-fold rotation-reflection axes.

3. Rotation-inversions. Similarly, sometimes a rotation through 2π/n followed by an inversion
in a point lying on the rotation axis is a symmetry element, even though such a rotation by itself
is not. The axis is then called an n-fold rotation-inversion axis. However, the axis in S6 is only a
3-fold rotation-inversion axis.

4. Reflections. A reflection takes every point into its mirror image in a plane, known as a
mirror plane.

5. Inversions. An inversion has a single fixed point. If that point is taken as the origin, then
every other point r is taken into −r.

Schönflies notation for the non-cubic crystallographic point groups

The twenty-seven non-cubic crystallographic point symmetry groups may contain any of the fol-
lowing symmetry operations, here given in Schönflies notation3:

Cn These groups contain only an n-fold rotation axis.

Cnv In addition to the n-fold rotation axis, these groups have a mirror plane that contains
the axis of rotation, plus as many additional mirror planes as the existence of the
n-fold axis requires.

Cnh These groups contain in addition to the n-fold rotation axis a single mirror plane
that is perpendicular to the axis.

Sn These groups contain only an n-fold rotation-reflection axis.

Dn In addition to the n-fold rotation axis, these groups contain a 2-fold axis perpendic-
ular to the n-fold rotation axis, plus as many additional 2-fold axes as are required
by the existence of the n-fold axis.

Dnh These (the most symmetric groups) contain all the elements of Dn plus a mirror
plane perpendicular to the n-fold axis.

Dnd These contain the elements of Dn plus mirror planes containing the n-fold axis, which
bisect the angles between the 2-fold axes.

Neumann’s principle

Neumann’s principle simply states that any type of symmetry which is exhibited by the point
symmetry group of the medium is also possessed by every physical property of the medium.

In other words, we can reformulate this for the optical properties as: the susceptibility tensors
of the medium must be left invariant under any transformation that also is a point symmetry
operation of the medium, or

χ
(n)′

µα1···αn
(−ωσ;ω1, . . . , ωn) = χ

(n)
µα1···αn

(−ωσ;ω1, . . . , ωn),

where the tensor elements in the primed coordinate system are transformed according to

χ
(n)′

µα1···αn
(−ωσ;ω1, . . . , ωn) = RµuRα1a1

· · ·Rαnan
χ

(n)
ua1···an

(−ωσ;ω1, . . . , ωn),

where the [3 × 3] matrix R describes a point symmetry operation of the system.

3 In Schönflies notation, C stands for “cyclic”, D for “dihedral”, and S for “spiegel”. The
subscripts h, v, and d stand for “horizontal”, “vertical”, and “diagonal”, respectively, and refer
to the placement of the placement of the mirror planes with respect to the n-fold axis, always
considered to be vertical. (The “diagonal” planes in Dnd are vertical and bisect the angles between
the 2-fold axes)

70



Lecture notes 7 Nonlinear Optics 5A5513 (2003)

Inversion properties

If the coordinate inversion Rαβ = −δαβ , is a symmetry operation of the medium (i. e. if the medium
possess so-called inversion symmetry), then it turns out that

χ
(n)
µα1···αn

= 0

for all even numbers n. (Question: Is this symmetry operation a proper or an improper rotation?)

Euler angles

As a convenient way of expressing the matrix of proper rotations, one may use the Euler angles of
classical mechanics,4

R(ϕ, ϑ, ψ) = A(ψ)B(ϑ)C(ϕ),

where

A(ψ) =




cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 , B(ϑ) =




1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ


 , C(ϕ) =




cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


 .

Example of the direct inspection technique applied to tetragonal media

Neumann’s principle is a highly useful technique, with applications in a wide range of disciplines in
physics. In order to illustrate this, we will now apply Neumann’s principle to a particular problem,
namely the reduction of the number of elements of the second order electric susceptibility tensor,
in a tetragonal medium belonging to point symmetry group 422.

422

Figure 5. An object5 possessing the symmetries of point symmetry group 422.

By inspecting Tables 2 and 3 of Hartmann’s An introduction to Crystal Physics6 one find that the
point symmetry group 422 of tetragonal media is described by the generating matrices

M4 =




1 0 0
0 −1 0
0 0 −1


 ,

[
twofold rotation
about x1 axis

]

and

M7 =




0 −1 0
1 0 0
0 0 1


 .

[
fourfold rotation
about x3 axis

]

4 C. f. Herbert Goldstein, Classical Mechanics (Addison-Wesley, London, 1980).
5 The figure illustrating the point symmetry group 422 is taken from N. W. Ashcroft and

N. D. Mermin, Solid state physics (Saunders College Publishing, Orlando, 1976), page 122.
6 Ervin Hartmann, An Introduction to Crystal Physics (University of Cardiff Press, International

Union of Crystallography, 1984), ISBN 0-906449-72-3. Notice that there is a printing error in
Table 3, where the twofold rotation about the x3-axis should be described by a matrix denoted
“M2”, and not “M1” as written in the table.
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Does the 422 point symmetry group possess inversion symmetry?

In Fig. 6, the steps involved for transformation of the object into an inverted coordinate frame are
shown.

x1

x2

x3

x′1
x′2

x′3

x′′1
x′′2

x′′3

Figure 6. Transformation into an inverted coordinate system (x′′, y′′, z′′) = (−x,−y,−z).

The result of the sequence in Fig. 6 is an object which cannot be reoriented in such a way that one
obtains the same shape as we started with for the non-inverted coordinate system, and hence the
object of point symmetry group 422 does not possess inversion symmetry.

Step one – Point symmetry under twofold rotation around the x1-axis

Considering the point symmetry imposed by the R = M4 matrix, we find that (for simplicity
omitting the frequency arguments of the susceptibility tensor) the second order susceptibility in
the rotated coordinate frame is described by the diagonal elements

χ
(2)′

111 = R1µR1αR1βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R1µR1αR1βχ
(2)
µαβ

=
3∑

µ=1

3∑

α=1

3∑

β=1

δ1µδ1αδ1βχ
(2)
µαβ = χ

(2)
111, (identity)

and

χ
(2)′

222 = R2µR2αR2βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R2µR2αR2βχ
(2)
µαβ

=
3∑

µ=1

3∑

α=1

3∑

β=1

(−δ2µ)(−δ2α)(−δ2β)χ(2)
µαβ = −χ(2)

222

= {Neumann′s principle} = χ
(2)
222 = 0

which, by noticing that the similar form R3α = −δ3α holds for the 333-component (i. e. the
zzz-component), also gives χ333 = −χ333 = 0. Further we have for the 231-component

χ
(2)′

231 = R2µR3αR1βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R2µR3αR1βχ
(2)
µαβ

=
3∑

µ=1

3∑

α=1

3∑

β=1

(−δ2µ)(−δ3α)δ1βχ
(2)
µαβ = χ

(2)
231, (identity)
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etc., and by continuing in this manner for all 27 elements of χ
(2)′

µαβ , one finds that the symmetry
operation R = M4 leaves us with the tensor elements listed in Table 1.

Zero elements Identities (no further info)

χ
(2)
112, χ

(2)
113, χ

(2)
121, χ

(2)
131,

χ
(2)
211, χ

(2)
222, χ

(2)
223, χ

(2)
232, (all other 13 elements)

χ
(2)
233, χ

(2)
311, χ

(2)
322, χ

(2)
323,

χ
(2)
332, χ

(2)
333

Table 1. Reduced set of tensor elements after the symmetry operation R = M4.

Step two – Point symmetry under fourfold rotation around the x3-axis

Proceeding with the next point symmetry operation, described by R = M7, one finds for the
remaining 13 elements that, for example, for the 123-element

χ
(2)′

123 = R1µR2αR3βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R1µR2αR3βχ
(2)
µαβ

=
3∑

µ=1

3∑

α=1

3∑

β=1

(−δ2µ)δ1αδ3βχ(2)
µαβ = −χ(2)

213

= {Neumann′s principle} = χ
(2)
123,

and for the 132-element

χ
(2)′

132 = R1µR3αR2βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R1µR3αR2βχ
(2)
µαβ

=
3∑

µ=1

3∑

α=1

3∑

β=1

(−δ2µ)δ3αδ1βχ(2)
µαβ = −χ(2)

231

= {Neumann′s principle} = χ
(2)
132,

while the 111-element (which previously, by using the R = M4 point symmetry, just gave an
identity with no further information) now gives

χ
(2)′

111 = R1µR1αR1βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

R1µR1αR1βχ
(2)
µαβ

=

3∑

µ=1

3∑

α=1

3∑

β=1

(−δ2µ)(−δ2α)(−δ2β)χ(2)
µαβ = −χ(2)

222

= {from previous result for χ
(2)
222} = 0

= {Neumann′s principle} = χ
(2)
111.

By (again) proceeding for all 27 elements of χ
(2)′

µαβ , one finds the set of tensor elements as listed in
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Table 2. (See also the tabulated set in Butcher and Cotter’s book, Table A3.2, page 299.)

Zero elements Nonzero elements

χ
(2)
111, χ

(2)
112, χ

(2)
113, χ

(2)
121, χ

(2)
122, χ

(2)
123 = −χ(2)

213,

χ
(2)
131, χ

(2)
133, χ

(2)
211, χ

(2)
212, χ

(2)
221, χ

(2)
132 = −χ(2)

231,

χ
(2)
222, χ

(2)
223, χ

(2)
232, χ

(2)
233, χ

(2)
311, χ

(2)
321 = −χ(2)

312,

χ
(2)
313, χ

(2)
322, χ

(2)
323, χ

(2)
331, χ

(2)
332, χ

(2)
333 (6 nonzero, 3 independent)

Table 2. Reduced set of tensor elements after symmetry operations R = M4 and R = M7.
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Lecture VIII
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Lecture 8

In this lecture, the electric polarisation density of the medium is finally inserted into Maxwell’s
equations, and the wave propagation properties of electromagnetic waves in nonlinear optical media
is for the first time in this course analysed. As an example of wave propagation in nonlinear optical
media, the optical Kerr effect is analysed for infinite plane continuous waves.

The outline for this lecture is:
• Maxwells equations (general electromagnetic wave propagation)
• Time dependent processes (envelopes slowly varying in space and time)
• Time independent processes (envelopes slowly varying in space but constant in time)

• Examples (optical Kerr-effect ⇔ χ
(3)
µαβγ(−ω;ω, ω,−ω))

Wave propagation in nonlinear media

Maxwell’s equations

The propagation of electromagnetic waves are, from a first principles approach, governed by the
Maxwell’s equations (here listed in their real-valued form in SI units),

∇× E(r, t) = −∂B(r, t)

∂t
, (Faraday′s law)

∇× H(r, t) = J(r, t) +
∂D(r, t)

∂t
, (Ampere′s law)

∇ · D(r, t) = ρ(r, t),

∇ · B(r, t) = 0,

where ρ(r, t) is the density of free charges, and J(r, t) the corresponding current density of free
charges.

Constitutive relations

The constitutive relations are in SI units formulated as

D(r, t) = ε0E(r, t) + P(r, t),

B(r, t) = µ0[H(r, t) + M(r, t)],

where P(r, t) = P[E(r, t),B(r, t)] is the macroscopic polarization density (electric dipole moment
per unit volume), and M(r, t) = M[E(r, t),B(r, t)] the magnetization (magnetic dipole moment
per unit volume) of the medium.

Here E(r, t) and B(r, t) are considered as the fundamental macroscopic electric and magnetic
field quantities; D(r, t) and H(r, t) are the corresponding derived fields associated with the state
of matter, connected to E(r, t) and B(r, t) through the electric polarization density P(r, t) and
magnetization (magnetic polarization density) M(r, t) through the basic constitutive relations. In
fact, the constitutive equations above form the very definitions1 of the electric polarization density
and magnetization.

1 J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975); J. A. Stratton,
Electromagnetic Theory (McGraw-Hill, New York, 1941).
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Two frequent assumptions in nonlinear optics

• No free charges present,

ρ(r, t) = 0, J(r, t) = 0.

(Any relaxation processes etc. are included in imaginary parts of the terms of the electric
susceptibility.)

• No magnetization of the medium,

M(r, t) = 0.

The wave equation

By taking the cross product with the nabla operator and Faraday’s law, one obtains

∇×∇× E(r, t) = − ∂

∂t
∇× B(r, t)

= −µ0
∂

∂t
∇× H(r, t)

= −µ0
∂

∂t

∂D(r, t)

∂t

= −µ0

(
ε0
∂2E(r, t)

∂t2
+
∂2P(r, t)

∂t2

)
.

Since now µ0ε0 = 1/c2 in SI units, with c being the speed of light in vacuum, one hence obtains
the basic wave equation, taken in time domain, as

∇×∇× E(r, t) +
1

c2
∂2E(r, t)

∂t2
= −µ0

∂2P(r, t)

∂t2
, (1)

where, as in the previous lectures of this course, the polarization density can be written in terms
of the perturbation series as

P(r, t) =
∞∑

k=1

P(k)(r, t) = ε0

∫ ∞

−∞

χ(1)
µα(−ω;ω)Eα(r, ω) exp(−iωt) dω

︸ ︷︷ ︸
=P(1)(r,t)

+
∞∑

k=2

P(k)(r, t)

︸ ︷︷ ︸
=P(NL)(r,t)

In the left hand side of Eq. (1), we find the part of the homogeneous wave equation for propagation
of electromagnetic waves in vacuum, while the right hand side described the modifications to the
vacuum propagation due to the interaction between light and matter. In this respect, it is now
clear that the electric polarisation effectively acts as a source term in the mathematical description
of electromagnetic wave propagation, making the otherwise homogeneous vacuum problem an
inhomogeneous problem (though with known source terms).

It should be noticed that whenever the polarization density is calculated from the Bloch equa-
tions (formulated later on, in lecture 10 of this course), instead of by means of a perturbation
series as above, the Maxwell equations and the wave equation (1) above are denoted Maxwell-
Bloch equations. In some sense, we can therefore see the choice of method for the calculation of
the polarization density as a switch point not only for using the susceptibility formalism or not for
the description of interaction between light and matter, but also for the form of the wave propa-
gation problem in nonlinear media, which mathematically significantly differ between the “pure”
Maxwell’s equations with susceptibilities and the Maxwell-Bloch equations.
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The wave equation in frequency domain (optional)

Frequently in this course, we have rather been studying the electric fields and polarisation densities
in frequency domain, since many phenomena in optics are properly and conveniently described as
static (in which case the frequency dependence is simply reduced to the interaction between discrete
frequencies in the spectrum). By using the Fourier integral identity2

Eα(t) =

∫ ∞

−∞

Eα(ω) exp(−iωt) dω = F
−1[Eα](t),

with inverse relation

Eα(ω) =
1

2π

∫ ∞

−∞

Eα(τ) exp(iωτ) dτ = F[Eα](ω),

we obtain the wave equation (1) as

∇×∇× E(r, ω) − ω2

c2
E(r, ω) = µ0ω

2P(r, ω).

Quasimonochromatic light - Time dependent problems

By inserting the perturbation series for the electric polarisation density into the general wave
equation (1), which apply to arbitrary electric field distributions and field intensities of the light,
one obtains the equation

∇×∇× E(r, t) +
1

c2
∂2

∂t2

∫ ∞

−∞

eµεµα(ω)Eα(r, ω) exp(−iωt) dω
︸ ︷︷ ︸

(denote this integral as I for later use)

= −µ0
∂2P(NL)(r, t)

∂t2
, (2)

where
εµα(ω) = δµα + χ(1)

µα(−ω;ω)

is a parameter commonly denoted as the relative electrical permittivity.3 This wave equation is
identical to Eq. (7.14) in Butcher and Cotter’s book. (Notice though the printing error in Butcher
and Cotter’s Eq. (7.14), where the first µ0 should be replaced by 1/c2.)

The second term of the left hand side of Eq. (2) gives all first order optical contributions to
the wave propagation, as well as all linear optical dispersion effects. This terms deserves some
extra attention, and we will now proceed with deriving the effect of the frequency dependence of
the relative permittivity upon the wave equation. First of all, we notice that since Eα(r,−ω) =
E∗
α(r, ω), which simply is a consequence of the choice of complex Fourier transform of a real valued

field, the reality condition of Eq. (2) requires that

εµα(−ω) = ε∗µα(ω).

2 From the inverse Fourier integral identity, it follows that the Fourier transform of a derivative
of a function f(t) is

F[f ′(t)](ω) = −iω F[f(t)](ω) ⇒ F[f ′′(t)](ω) = −ω2
F[f(t)](ω).

3 Notice that for isotropic media, χ
(1)
µα(−ω;ω) = χ

(1)
xx (−ω;ω)δµα, which leads to the simplified

form
eµεµα(ω)Eα(r, ω) = ε(ω)E(r, ω).

We will here, however, continue with the general form, in order not to loose generality in discussion
that is to follow.
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It should be emphasized that this property of the relative electrical permittivity merely is a conve-
nient mathematical construction, since we in regular physical terms only consider positive angular
frequencies as argument for the refractive index, etc.

For quasimonochromatic light, the electric field and polarisation density are taken as

E(r, t) =
∑

ωσ≥0

Re[Eωσ
(r, t) exp(−iωσt)],

P(r, t) =
∑

ωσ≥0

Re[Pωσ
(r, t) exp(−iωσt)],

where Eωσ
(r, t) and Pωσ

(r, t) are slowly varying envelopes of the fields. In the frequency domain,
the quasimonochromatic fields are expressed as

E(r, ω) =
1

2

∑

ωσ≥0

[Eωσ
(r, ω − ωσ) + E∗

ωσ
(r,−ω − ωσ)],

P(r, ω) =
1

2

∑

ωσ≥0

[Pωσ
(r, ω − ωσ) + P∗

ωσ
(r,−ω − ωσ)],

where the envelopes have some limited extent around the carrier frequencies at ±ωσ. Notice that
the fields taken in the frequency domain are expressed entirely in terms of their respective temporal
envelope, that is to say, without the exponential functions that appear in their counterparts in time
domain.

For simplicity considering a medium that in the linear optical domain is isotropic, with the
relative electrical permittivity

εµα(ω) = ε(ω)δµα = n2
0(ω)δµα,

where n0(ω) is the first order contribution to the refractive index of the medium, this leads to the
middle term of the wave equation (1) in the form

I ≡ 1

c2
∂2

∂t2

∫ ∞

−∞

eµεµα(ω)Eα(r, ω) exp(−iωt) dω

= −
∫ ∞

−∞

ω2n2(ω)

c2
1

2

∑

ωσ≥0

[Eωσ
(r, ω − ωσ) + E∗

ωσ
(r,−ω − ωσ)]

︸ ︷︷ ︸
quasimonochromatic form of E(r,ω)

exp(−iωt) dω

= {denote ω2ε(ω)/c2 ≡ ω2n2
0(ω)/c2 ≡ k2(ω)}

= −1

2

∑

ωσ≥0

∫ ∞

−∞

k2(ω)[Eωσ
(r, ω − ωσ) + E∗

ωσ
(r,−ω − ωσ)] exp(−iωt) dω.

= −1

2

∑

ωσ≥0

∫ ∞

−∞

k2(ω)Eωσ
(r, ω − ωσ) exp(−iωt) dω + c. c.

If now the field envelopes decay to zero rapidly enough in the vicinity of the carrier frequencies
(as we would expect for quasimonochromatic light, with a strong spectral confinement around the
carrier frequency of the light), then we may expect that a good approximation is to make a Taylor
expansion of k2(ω), in the neighbourhood of respective carrier frequency of the light, as

k2(ω) ≈
(
k(ωσ) +

dk

dω

∣∣∣
ωσ

(ω − ωσ) +
1

2!

d2k

dω2

∣∣∣
ωσ

(ω − ωσ)
2
)2

≈ k2
σ + 2kσ

dk

dω

∣∣∣
ωσ

(ω − ωσ) + kσ
d2k

dω2

∣∣∣
ωσ

(ω − ωσ)
2,
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where the notation kσ = k(ωσ) was introduced, and hence4

I ≈ −1

2

∑

ωσ≥0

∫ ∞

−∞

(
k2
σ + 2kσ

dk

dω

∣∣∣
ωσ

(ω − ωσ) + kσ
d2k

dω2

∣∣∣
ωσ

(ω − ωσ)
2
)

× Eωσ
(r, ω − ωσ) exp(−iωt) dω + c. c.

= {change variable of integration ω′ = ω − ωσ}

= −1

2

∑

ωσ≥0

∫ ∞

−∞

(
k2
σ + 2kσ

dk

dω

∣∣∣
ωσ

ω′ + kσ
d2k

dω2

∣∣∣
ωσ

ω′2
)

× Eωσ
(r, ω′) exp(−iω′t) dω′ exp(−iωσt) + c. c.

=

{
use

∫ ∞

−∞

ωnf(ω) exp(−iωt) dω = F
−1[ωnf(ω)](t) = in

dnf(t)

dtn

}

= −1

2

∑

ωσ≥0

exp(−iωσt)
(
k2
σ + i2kσ

dk

dω

∣∣∣
ωσ

∂

∂t
− kσ

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Eωσ

(r, t) + c. c.

As this result is inserted back into the wave equation (2), one obtains

1

2

∑

ωσ≥0

exp(−iωσt)
[
∇×∇× Eωσ

(r, t)

−
(
k2
σ + 2ikσ

dk

dω

∣∣∣
ωσ

∂

∂t
− kσ

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Eωσ

(r, t)
]

+ c. c.

= −µ0
∂2P(NL)(r, t)

∂t2

= −µ0
∂2

∂t2
1

2

∑

ωσ≥0

P(NL)
ωσ

(r, t) exp(−iωσt) + c. c.

≈ µ0
1

2

∑

ωσ≥0

ω2
σP

(NL)
ωσ

(r, t) exp(−iωσt) + c. c.

As we separate out the respective frequency components at ω = ωσ of this equation, one obtains
the time dependent wave equation for the temporal envelope components of the electric field as

∇×∇× Eωσ
(r, t) −

(
k2
σ + i2kσ

1

vg

∂

∂t
− kσ

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Eωσ

(r, t) = µ0ω
2
σP

(NL)
ωσ

(r, t), (3)

where

vg =
( dk
dω

∣∣∣
ωσ

)−1

.

4 Notice that unless we apply the second approximation in the Taylor expansion of k2(ω), terms
containing the squares of the derivatives will appear, which will lead to wave equations that differ
from the ones given by Butcher and Cotter. In particular, this situation will arise even if one uses
the suggested expansion given by Eq. (7.23) in Butcher and Cotter’s book, which hence should be
taken with some care if one wish to build a strict foundation for the time-dependent wave equation.
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Three practical approximations

[1] The infinite plane wave approximation,

Eωσ
(r, t) = Eωσ

(z, t)⊥ez ⇒ ∇×∇× → − ∂2

∂z2
.

[2] Unidirectional propagation,

Eωσ
(z, t) = Aωσ

(z, t) exp(±ikσz)
⇓

∇×∇× Eωσ
(z, t) = −[

∂2Aωσ

∂z2
± 2ikσ

∂Aωσ

∂z
− k2

σAωσ
] exp(±ikσz),

for waves propagating in the positive/negative z-direction. In this case, the real-valued electric
field hence takes the form

E(r, t) =
∑

ωσ≥0

Re[Eωσ
(r, t) exp(−iωσt)]

=
∑

ωσ≥0

Re[Aωσ
(z, t) exp(±ikσz − iωσt)]

=
∑

ωσ≥0

|Aωσ
(z, t)|Re{exp[ikσz ∓ iωσt+ iφ(z)]}

=
∑

ωσ≥0

|Aωσ
(z, t)| cos(kσz ∓ ωσt+ φ(z)),

where φ(z, t) describes the spatially and temporally varying phase of the complex-valued slowly
varying envelope function Aωσ

(z, t) of the electric field.

[3] The slowly varying envelope approximation,

∣∣∣∂
2Aωσ

∂z2

∣∣∣ �
∣∣∣kσ

∂Aωσ

∂z

∣∣∣.

These approximations, whenever applicable, further reduce the time dependent wave equation to

(
± i

∂

∂z
+ i

1

vg

∂

∂t
− 1

2

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Aωσ

(z, t) = −µ0ω
2
σ

2kσ
P(NL)
ωσ

(r, t) exp(∓ikσz). (4)

This form of the wave equation is identical to Butcher and Cotter’s Eq. (7.24), with the exception
that here waves propagating in positive (upper signs) as well as negative (lower signs) z-direction
are considered.
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Monochromatic light

Monochromatic optical field

E(r, t) =
∑

σ

Re[Eωσ
(r) exp(−iωσt)], ωσ ≥ 0

E(r, ω) =
1

2

∑

σ

[Eωσ
(r)δ(ω − ωσ) + E∗

ωσ
(r)δ(ω + ωσ)]

Polarization density induced by monochromatic optical field

P(n)(r, t) =
∑

ωσ≥0

Re[P(n)
ωσ

exp(−iωσt)], ωσ = ω1 + ω2 + . . .+ ωn

(For construction of P
(n)
ωσ , see notes on the Butcher and Cotter convention handed out during the

third lecture.)

Monochromatic light - Time independent problems

For strictly monochromatic light, as for example the output light of continuous wave lasers, the
temporal field envelopes are constants in time, and the wave equation (3) is reduced to

∇×∇× Eωσ
(r) − k2

σEωσ
(r) = µ0ω

2
σP

(NL)
ωσ

(r). (5)

By applying the above listed approximations, one immediately finds the monochromatic, time
independent form of Eq. (3) in the infinite plane wave limit and slowly varying approximation as

∂

∂z
Aωσ

= ±iµ0ω
2
σ

2kσ
P(NL)
ωσ

exp(∓ikσz), (6)

where the upper/lower sign correspond to a wave propagating in the positive/negative z-direction.
This equation corresponds to Butcher and Cotter’s Eq. (7.17).
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Example I: Optical Kerr-effect - Time independent case

In this example, we consider continuous wave propagation5 in optical Kerr-media, using light
polarized in the x-direction and propagating along the positive direction of the z-axis,

E(r, t) = Re[Eω(z) exp(−iωt)], Eω(z) = Aω(z) exp(ikz) = exA
x
ω(z) exp(ikz),

where, as previously, k = ωn0/c. From material handed out during the third lecture (notes on the
Butcher and Cotter convention), the nonlinear polarization density for x-polarized light is given

as P
(NL)
ω = P

(3)
ω , with

P(3)
ω = ε0(3/4)exχ

(3)
xxxx(−ω;ω, ω,−ω)|Exω|2Exω

= ε0(3/4)χ
(3)
xxxx|Eω|2Eω

= ε0(3/4)χ
(3)
xxxx|Aω|2Aω exp(ikz),

and the time independent wave equation for the field envelope Aω, using Eq. (6), becomes

∂

∂z
Aω = i

µ0ω
2

2k
ε0(3/4)χ

(3)
xxxx|Aω|2Aω exp(ikz)︸ ︷︷ ︸

=P
(NL)
ω (z)

exp(−ikz)

= i
3ω2

8c2k
χ(3)
xxxx|Aω|2Aω

= {since k = ωn0(ω)/c}

= i
3ω

8cn0
χ(3)
xxxx|Aω|2Aω

= {in analogy with Butcher and Cotter Eq. (6.63), n2 = (3/8n0)χ
(3)
xxxx}

= i
ωn2

c
|Aω|2Aω,

or, equivalently, in its scalar form

∂

∂z
Axω = i

ωn2

c
|Axω|2Axω.

If the medium of interest now is analyzed at an angular frequency far from any resonance, we may
look for solutions to this equation with |Aω| being constant (for a lossless medium). For such a
case it is straightforward to integrate the final wave equation to yield the general solution

Aω(z) = Aω(z0) exp[iωn2|Aω(z0)|2z/c],

or, again equivalently, in the scalar form

Axω(z) = Axω(z0) exp[iωn2|Axω(z0)|2z/c],

which hence gives the solution for the real-valued electric field E(r, t) as

E(r, t) = Re[Eω(z) exp(−iωt)]
= Re{Aω(z) exp[i(kz − ωt)]}
= Re{Aω(z0) exp[i(kz + ωn2|Aω(z0)|2z/c− ωt)]}.

From this solution, one immediately finds that the wave propagates with an effective propagation
constant

k + ωn2|Aω(z0)|2/c = (ω/c)(n0 + n2|Aω(z0)|2),
that is to say, experiencing the intensity dependent refractive index

neff = n0 + n2|Aω(z0)|2.

5 That is to say, a time independent problem with the temporal envelope of the electrical field
being constant in time.
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Example II: Optical Kerr-effect - Time dependent case

We now consider a time dependent envelope Eω(z, t), of an optical wave propagating in the same
medium and geometry as in the previous example, for which now

E(r, t) = Re[Eω(z, t) exp(−iωt)], Eω(z, t) = Aω(z, t) exp(ikz) = exA
x
ω(z, t) exp(ikz).

The proper wave equation to apply for this case is the time dependent wave equation (4), and since
the nonlinear polarization density of the medium still is given by the optical Kerr-effect, we obtain

(
i
∂

∂z
+ i

1

vg

∂

∂t
− 1

2

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Aω(z, t)

= −µ0ω
2

2k
ε0(3/4)χ

(3)
xxxx|Aω(z, t)|2Aω(z, t) exp(ikz)︸ ︷︷ ︸

=P
(NL)
ω (z,t)

exp(−ikz)

= − 3ω2

8c2k
χ(3)
xxxx|Aω(z, t)|2Aω(z, t)

= {as in previous example}
= −ωn2

c
|Aω(z, t)|2Aω(z, t).

The resulting wave equation

(
i
∂

∂z
+ i

1

vg

∂

∂t
− 1

2

d2k

dω2

∣∣∣
ωσ

∂2

∂t2

)
Aω = −ωn2

c
|Aω|2Aω

is the starting point for analysis of solitons and solitary waves in optical Kerr-media. The obtained
equation is the non-normalized form of the in nonlinear physics (not only nonlinear optics!) often
encountered nonlinear Schrödinger equation (or NLSE, as its common acronym yields).

For a discussion on the transformation that cast the nonlinear Schrödinger equation into the
normalized nonlinear Schrödinger equation, see Butcher and Cotter’s book, page 240.
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Lecture notes

Lecture 9

In this lecture, we will focus on examples of electromagnetic wave propagation in nonlinear optical
media, by applying the forms of Maxwell’s equations as obtained in the eighth lecture to a set of
particular nonlinear interactions as described by the previously formulated nonlinear susceptibility
formalism.

The outline for this lecture is:
• General process for solving problems in nonlinear optics
• Second harmonic generation (SHG)
• Optical Kerr-effect

General process for solving problems in nonlinear optics

The typical steps in the process of solving a theoretical problem in nonlinear optics typically
involve: {

define the optical interaction of interest
(identifying the susceptibility)

}

⇓
{

define in which medium the interaction take place
(identify crystallographic point symmetry group)

}

⇓
{

consider eventual additional symmetries and constraints
(e. g. intrinsic, overall, or Kleinman symmetries)

}

⇓
{

construct the polarization density
(the Butcher and Cotter convention)

}

⇓
{

formulate the proper wave equation
(e. g. taking dispersion or diffraction into account)

}

⇓
{

formulate the proper boundary
conditions for the wave equation

}

⇓
{

solve the wave equation under
the boundary conditions

}
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Formulation of the exercises in this lecture

In order to illustrate the scheme as previously outlined, the following exercises serve as to give
the connection between the susceptibilities, as extensively analysed from a quantum-mechanical
basis in earlier lectures of this course, and the wave equation, derived from Maxwell’s equations of
motion for electromagnetic fields.

Exercise 1. (Second harmonic generation in negative uniaxial media) Consider a continuous pump
wave at angular frequency ω, initially polarized in the y-direction and propagating in the positive
x-direction of a negative uniaxial crystal of crystallographic point symmetry group 3m. (Examples
of crystals belonging to this class: beta-BaB2O4/BBO, LiNbO3.)

1a. Formulate the polarization density of the medium for the pump and second harmonic wave.
1b. Formulate the system of equations of motion for the electromagnetic fields.
1c. Assuming no second harmonic signal present at the input, solve the equations of motion for

the second harmonic field, using the non-depleted pump approximation, and derive an expression
for the conversion efficiency of the second harmonic generation.

Exercise 2. (Optical Kerr-effect – continuous wave case) In this setup, a monochromatic optical
wave is propagating in the positive z-direction of an isotropic optical Kerr-medium.

2a. Formulate the polarization density of the medium for a wave polarized in the xy-plane.
2b. Formulate the polarization density of the medium for a wave polarized in the x-direction.
2c. Formulate the wave equation for continuous wave propagation in optical Kerr-media. The

continuous wave is x-polarized and propagates in the positive z-direction.
2d. For lossless media, solve the wave equation and give an expression for the nonlinear,

intensity-dependent refractive index n = n0 + n2|Eω|2.
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Second harmonic generation

The optical interaction

In the case of second harmonic generation (SHG), two photons at angular frequency ω combine to
a photon at twice the angular frequency,

~ω + ~ω → ~(2ω).

This interaction is for the second harmonic wave (at angular frequency ω)described by the second
order susceptibility

χ
(2)
µαβ(−ωσ;ω, ω),

where ωσ = 2ω is the generated second harmonic frequency of the light.

Symmetries of the medium

In this example we consider second harmonic generation in trigonal media of crystallographic point
symmetry group 3m. (Example: LiNbO3)

y

x

z Crystal frame (x, y, z)

point symmetry group 3m

(e. g. LiNbO3)

EI(r, t) = Re[Eω exp(−iωt)]
= eyRe[Eyω exp(−iωt)]

ET(r, t) = Re[Eω exp(−iωt)] + Re[E2ω exp(−i2ωt)]

Figure 1. The setup for optical second harmonic generation in LiNbO3.

For this point symmetry group, the nonzero tensor elements of the first order susceptibility are
(for example according to Table A3.1 in The Elements of Nonlinear Optics)

χ(1)
xx = χ(1)

yy , χ(1)
zz ,

which gives the ordinary refractive indices

nx(ω) = ny(ω) = [1 + χ(1)
xx (−ω;ω)]1/2 ≡ nO(ω)

for waves components polarized in the x- or y-directions, and the extraordinary refractive index

nz(ω) = [1 + χ(1)
zz (−ω;ω)]1/2 ≡ nE(ω)

for the wave component polarized in the z-direction. Since we here are considering a negatively
uniaxial crystal (see Butcher and Cotter, p. 214), these refractive indices satisfy the inequality

nE(ω) ≤ nO(ω).

The nonzero tensor elements of the second order susceptibility are (for example according to
Table A3.2 in The Elements of Nonlinear Optics)

χ(2)
yxx = χ(2)

xyx = χ(2)
xxy = −χ(2)

yyy , χ(2)
zzz ,

χ(2)
zxx = χ(2)

zyy, χ(2)
yyz = χ(2)

xxz , χ(2)
yzy = χ(2)

xzx,
(1)
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Additional symmetries

Intrinsic permutation symmetry for the case of second harmonic generation gives

χ(2)
xxz(−2ω;ω, ω) = χ(2)

xzx(−2ω;ω, ω) = χ(2)
yzy(−2ω;ω, ω) = χ(2)

yyz(−2ω;ω, ω),

which reduces the second order susceptibility in Eq. (1) to a set of 11 tensor elements, of which only
4 are independent. (We recall that the intrinsic permutation symmetry is always applicable, as
being a consequence of the symmetrization described in lectures two and five.) Whenever Kleinman
symmetry holds, the susceptibility is in addition symmetric under any permutation of the indices,
which hence gives the additional relation

χ(2)
zxx(−2ω;ω, ω) = χ(2)

xzx(−2ω;ω, ω) = χ(2)
xxz(−2ω;ω, ω),

i. e. reducing the second order susceptibility to a set of 11 tensor elements, of which only 3 are
independent.

To summarize, the set of nonzero tensor elements describing second harmonic generation under
Kleinman symmetry is

χ(2)
yxx = χ(2)

xyx = χ(2)
xxy = −χ(2)

yyy , χ(2)
zzz,

χ(2)
zxx = χ(2)

zyy = χ(2)
yyz = χ(2)

xxz = χ(2)
yzy = χ(2)

xzx.
(2)

For the pump field at angular frequency ω, the relevant susceptibility describing the interaction
with the second harmonic wave is1

χ
(2)
µαβ(−ω; 2ω,−ω).

For an arbitrary frequency argument, this is the proper form of the susceptibility to use for the
fundamental field, and this form generally differ from that of the susceptibilities for the second har-
monic field. However, whenever Kleinman symmetry holds, the susceptibility for the fundamental
field can be cast into the same parameters as for the second harmonic field, since

χ
(2)
µαβ(−ω; 2ω,−ω) =

{
Apply overall permutation symmetry

}

= χ
(2)
αµβ(2ω;−ω,−ω)

=
{
Apply Kleinman symmetry

}

= χ
(2)
µαβ(2ω;−ω,−ω)

=
{
Apply reality condition [B.&C.Eq. (2.43)]

}

= [χ
(2)
µαβ(−2ω;ω, ω)]∗

= χ
(2)
µαβ(−2ω;ω, ω).

Hence the second order interaction is described by the same set of tensor elements for the funda-
mental as well as the second harmonic optical wave whenever Kleinman symmetry applies.

1 Keep in mind that in the convention of Butcher and Cotter, the frequency arguments to the
right of the semicolon may be writen in arbitrary order, hence we may in an equal description
instead use

χ(2)
xxz(−ω;−ω, 2ω)

for the description of the second order interaction between light and matter.
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The polarization density

Following the convention of Butcher and Cotter,2 the degeneracy factor for the second harmonic
signal at 2ω is

K(−2ω;ω, ω) = 2l+m−np,

where
p = {the number of distinct permutations of ω, ω} = 1,

n = {the order of the nonlinearity} = 2,

m = {the number of angular frequencies ωk that are zero} = 0,

l =

{
1, if 2ω 6= 0,
0, otherwise.

}
= 1,

i. e.

K(−2ω;ω, ω) = 21+0−2 × 1 = 1/2.

For the fundamental optical field at ω, one might be mislead to assume that since the second
order interaction for this field is described by an identical set of tensor elements as for the second
harmonic wave, the degeneracy factor must also be identical to the previously derived one. This
is, however, a very wrong assumption, and one can easily verify that the proper degeneracy factor
for the fundamental field instead is given as

K(−ω; 2ω,−ω) = 2l+m−np,

where
p = {the number of distinct permutations of 2ω,−ω} = 2,

n = {the order of the nonlinearity} = 2,

m = {the number of angular frequencies ωk that are zero} = 0,

l =

{
1, if ω 6= 0,
0, otherwise.

}
= 1,

i. e.

K(−ω; 2ω,−ω) = 21+0−2 × 2 = 1.

The general second harmonic polarization density of the medium is hence given as

[P
(NL)
2ω ]z = [P

(2)
2ω ]z = ε0K(−2ω;ω, ω)χ

(2)
zαβ(−2ω;ω, ω)

︸ ︷︷ ︸
= 1

2χ
(2)

zαβ
(−2ω;ω,ω)

EαωE
β
ω

= (ε0/2)[χ
(2)
zxxE

x
ωE

x
ω + χ(2)

zyyE
y
ωE

y
ω + χ(2)

zzzE
z
ωE

z
ω]

= (ε0/2)[χ
(2)
zxx(E

x
ωE

x
ω + EyωE

y
ω) + χ(2)

zzzE
z
ωE

z
ω],

[P
(NL)
2ω ]y = (ε0/2)[χ

(2)
yxxE

x
ωE

x
ω + χ(2)

yyyE
y
ωE

y
ω + χ(2)

yyzE
y
ωE

z
ω + χ(2)

yzyE
z
ωE

y
ω]

= (ε0/2)[χ
(2)
yxx(E

x
ωE

x
ω − EyωE

y
ω) + χ(2)

zxx(E
y
ωE

z
ω + EzωE

y
ω)],

[P
(NL)
2ω ]x = (ε0/2)[χ

(2)
xxyE

x
ωE

y
ω + χ(2)

xyxE
y
ωE

x
ω + χ(2)

xxzE
x
ωE

z
ω + χ(2)

xzxE
z
ωE

x
ω]

= (ε0/2)[χ
(2)
yxx(E

x
ωE

y
ω + EyωE

x
ω) + χ(2)

zxx(E
x
ωE

z
ω + EzωE

x
ω)],

2 See course material on the Butcher and Cotter convention handed out during the third lecture.
Notice that for the first order polarization density, one at optical frequencies always has the trivial
degeneracy factor

K(−2ω;ω) = 2l+m−np = 21+0−1 × 1 = 1.
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while the general polarization density at the angular frequency of the pump field becomes3

[P(NL)
ω ]z = [P(2)

ω ]z = ε0K(−ω; 2ω,−ω)χ
(2)
zαβ(−ω; 2ω,−ω)

︸ ︷︷ ︸
=χ

(2)

zαβ
(−2ω;ω,ω)

Eα2ωE
β
−ω

= ε0[χ
(2)
zxxE

x
2ωE

x∗
ω + χ(2)

zyyE
y
2ωE

y∗
ω + χ(2)

zzzE
z
2ωE

z∗
ω ]

= ε0[χ
(2)
zxx(E

x
2ωE

x∗
ω + Ey2ωE

y∗
ω ) + χ(2)

zzzE
z
2ωE

z∗
ω ],

[P(NL)
ω ]y = ε0[χ

(2)
yxxE

x
2ωE

x∗
ω + χ(2)

yyyE
y
2ωE

y∗
ω + χ(2)

yyzE
y
2ωE

z∗
ω + χ(2)

yzyE
z
2ωE

y∗
ω ]

= ε0[χ
(2)
yxx(E

x
2ωE

x∗
ω − Ey2ωE

y∗
ω ) + χ(2)

zxx(E
y
2ωE

z∗
ω + Ez2ωE

y∗
ω )],

[P(NL)
ω ]x = ε0[χ

(2)
xxyE

x
2ωE

y∗
ω + χ(2)

xyxE
y
2ωE

x∗
ω + χ(2)

xxzE
x
2ωE

z∗
ω + χ(2)

xzxE
z
2ωE

x∗
ω ]

= ε0[χ
(2)
yxx(E

x
2ωE

y∗
ω + Ey2ωE

x∗
ω ) + χ(2)

zxx(E
x
2ωE

z∗
ω + Ez2ωE

x∗
ω )].

For a pump wave polarized in the yz-plane of the crystal frame, the polarization density of the
medium hence becomes

[P
(NL)
2ω ]z = (ε0/2)[χ

(2)
zxxE

y
ωE

y
ω + χ(2)

zzzE
z
ωE

z
ω],

[P
(NL)
2ω ]y = (ε0/2)[−χ(2)

yxxE
y
ωE

y
ω + χ(2)

zxx(E
y
ωE

z
ω + EzωE

y
ω)],

[P
(NL)
2ω ]x = 0,

and
[P(NL)

ω ]z = ε0[χ
(2)
zxxE

y
2ωE

y∗
ω + χ(2)

zzzE
z
2ωE

z∗
ω ],

[P(NL)
ω ]y = ε0[−χ(2)

yxxE
y
2ωE

y∗
ω + χ(2)

zxx(E
y
2ωE

z∗
ω + Ez2ωE

y∗
ω )],

[P(NL)
ω ]x = 0.

The wave equation

Strictly speaking, the previously formulated polarization density gives a coupled system between
the polarization states of both the fundamental and second harmonic waves, since both the y-
and z-components of the polarization densities at ω and 2ω contain components of all other field
components. However, for simplicity we will here restrict the continued analysis to the case of a

y-polarized input pump wave, which through the χ
(2)
zyy = χ

(2)
zxx elements give rise to a z-polarized

second harmonic frequency component at 2ω.
The electric fields of the fundamental and second harmonic optical waves are for the forward

propagating configuration expressed in their spatial envelopes Aω and A2ω as

Eω(x) = eyA
y
ω(x) exp(ikωy

x), kωy
≡ ωnωy

/c ≡ ωnO(ω)/c

E2ω(x) = ezA
z
2ω(x) exp(ik2ωz

x), k2ωz
≡ 2ωn2ωz

/c ≡ 2ωnE(2ω)/c

Using the above separation of the natural, spatial oscillation of the light, in the infinite plane wave
approximation and by using the slowly varying envelope approximation, the wave equation for the
envelope of the second harmonic optical field becomes (see Eq. (6) in the notes from lecture eight)

∂Az2ω
∂x

= i
µ0(2ω)2

2k2ωz

[P
(NL)
2ω ]z exp(−ik2ωz

x)

= i
µ0(2ω)2

2(2ωn2ωz
/c)

ε0
2
χ(2)
zxxA

y
ω

2 exp(2ikωy
x)

︸ ︷︷ ︸
=[P

(NL)
2ω

]z

exp(−ik2ωz
x)

= i
ωχ

(2)
zxx

2n2ωz
c
Ayω

2 exp[i(2kωy
− k2ωz

)x],

3 Keep in mind that a negative frequency argument to the right of the semicolon in the suscep-
tibility is to be associated with the complex conjugate of the respective electric field; see Butcher
and Cotter, section 2.3.2.
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while for the fundamental wave,

∂Ayω
∂x

= i
µ0ω

2

2kωy

[P(NL)
ω ]y exp(−ikωy

x)

= i
µ0ω

2

2(ωnωy
/c)

ε0χ
(2)
zxxA

z
2ω exp(ik2ωz

x)Ay∗ω exp(−ikωy
x)

︸ ︷︷ ︸
=[P

(NL)
ω ]y

exp(−ikωy
x)

= i
ωχ

(2)
zxx

2nωy
c
Az2ωA

y∗
ω exp[−i(2kωy

− k2ωz
)x].

These equations can hence be summarized by the coupled system

∂Az2ω
∂x

= i
ωχ

(2)
zxx

2n2ωz
c
Ayω

2 exp(i∆kx), (3a)

∂Ayω
∂x

= i
ωχ

(2)
zxx

2nωy
c
Az2ωA

y∗
ω exp(−i∆kx). (3b)

where
∆k = 2kωy

− k2ωz

= 2ωnωy
/c− 2ωn2ωz

/c

= (2ω/c)(nωy
− ωn2ωz

)

is the so-called phase mismatch between the pump and second harmonic wave.

Boundary conditions

Here the boundary conditions are simply that no second harmonic signal is present at the input,

Az2ω(0) = 0,

together with a known input field at the fundamental frequency,

Ayω(0) = {known}.

Solving the wave equation

Considering a nonzero ∆k, the conversion efficiency is regularly quite small, and one may approx-
imately take the spatial distribution of the pump wave to be constant, Ayω(x) ≈ Ayω(0). Using this
approximation4, and by applying the initial condition Az2ω(0) = 0 of the second harmonic signal,
one finds

Az2ω(L) =

∫ L

0

∂Az2ω(z)

∂x
dx

=

∫ L

0

i
ωχ

(2)
zxx

2n2ωz
c
Ayω

2(0) exp(i∆kx) dx

=
ωχ

(2)
zxx

2n2ωz
c
Ayω

2(0)
1

∆k
[exp(i∆kL) − 1]

=
{
Use [exp(i∆kL) − 1]/∆k = iL exp(i∆kL/2) sinc(∆kL/2)

}

= i
ωχ

(2)
zxxL

2n2ωz
c
Ayω

2(0) exp(i∆kL/2) sinc(∆kL/2).

4 For an outline of the method of solving the coupled system (1) exactly in terms of Jacobian
elliptic functions (thus allowing for a depleted pump as well), see J. A. Armstrong, N. Bloembergen,
J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918–1939, (1962).
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Figure 2. Conversion efficiency I2ω(L)/Iω(0) as function of normalized crystal length ∆kL/2. The
conversion efficiency is in the phase mismatched case (∆k 6= 0) a periodic function, with period
2Lc, with Lc = π/∆k being the coherence length.

In terms if the light intensities of the waves, one after a propagation distance x = L hence has the
second harmonic signal with intensity I2ω(L) expressed in terms of the input intensity Iω as

I2ω(L) =
1

2
ε0cn2ωz

|Az2ω(L)|2

=
1

2
ε0cn2ωz

∣∣∣iωχ
(2)
zxxL

2n2ωz
c
Ayω

2(0) exp(i∆kL/2) sinc(∆kL/2)
∣∣∣
2

= ε0
ω2L2

8n2ωz
c
|χ(2)
zxx|2|Ayω(0)|4 sinc2(∆kL/2)

=

{
Use |Ayω(0)|2 =

2Iω(0)

ε0cnωy

}

= ε0
ω2L2

8n2ωz
c
|χ(2)
zxx|2

4I2
ω(0)

ε20c
2n2
ωy

sinc2(∆kL/2)

=
ω2L2

2ε0c3
|χ(2)
zxx(−2ω;ω, ω)|2
n2ωz

n2
ωy

I2
ω(0) sinc2(∆kL/2),

i. e. with the conversion efficiency

I2ω(L)

Iω(0)
=
ω2L2

2ε0c3
|χ(2)
zxx(−2ω;ω, ω)|2
n2ωz

n2
ωy

Iω(0) sinc2(∆kL/2).
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Figure 3. Ordinary and extraordinary refractive indices of a negative uniaxial crystal as function
of vacuum wavelength of the light, in the case of normal dispersion. Phase matching between the
pump and second harmonic wave is obtained whenever nωy

≡ nO(ω) = nE(2ω) ≡ n2ωz
.
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Figure 4. Conversion efficiency I2ω(L)/Iω(0) as function of normalized crystal length ∆kL/2 when
the material properties are periodically reversed, with a half-period of Lc.
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Optical Kerr-effect - Field corrected refractive index

As a start, we assume a monochromatic optical wave (containing forward and/or backward prop-
agating components) polarized in the xy-plane,

E(z, t) = Re[Eω(z) exp(−iωt)] ∈ R
3,

with all spatial variation of the field contained in

Eω(z) = exE
x
ω(z) + eyE

y
ω(z) ∈ C

3.

The optical interaction

Optical Kerr-effect is in isotropic media described by the third order susceptibility5

χ
(3)
µαβγ(−ω;ω, ω,−ω).

Symmetries of the medium

The general set of nonzero components of χ
(3)
µαβγ for isotropic media are from Appendix A3.3 of

Butcher and Cotters book given as

χ(3)
xxxx = χ(3)

yyyy = χ(3)
zzzz ,

χ(3)
yyzz = χ(3)

zzyy = χ(3)
zzxx = χ(3)

xxzz = χ(3)
xxyy = χ(3)

yyxx

χ(3)
yzyz = χ(3)

zyzy = χ(3)
zxzx = χ(3)

xzxz = χ(3)
xyxy = χ(3)

yxyx

χ(3)
yzzy = χ(3)

zyyz = χ(3)
zxxz = χ(3)

xzzx = χ(3)
xyyx = χ(3)

yxxy

(4)

with
χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx,

i. e. a general set of 21 elements, of which only 3 are independent.

Additional symmetries

By applying the intrinsic permutation symmetry in the middle indices for optical Kerr-effect, one
generally has

χ
(3)
µαβγ(−ω;ω, ω,−ω) = χ

(3)
µβαγ(−ω;ω, ω,−ω),

which hence slightly reduce the set (4) to still 21 nonzero elements, but of which now only two are
independent. For a beam polarized in the xy-plane, the elements of interest are only those which
only contain x or y in the indices, i. e. the subset

χ(3)
xxxx = χ(3)

yyyy , χ(3)
xxyy = χ(3)

yyxx =

{
intr. perm. symm.

(α, ω) 
 (β, ω)

}
= χ(3)

xyxy = χ(3)
yxyx, χ(3)

xyyx = χ(3)
yxxy ,

with
χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx,

i. e. a set of eight elements, of which only two are independent.

5 Again, keep in mind that in the convention of Butcher and Cotter, the frequency arguments to
the right of the semicolon may be writen in arbitrary order, hence we may in an equal description
instead use

χ
(3)
µαβγ(−ω;ω,−ω, ω)

or
χ

(3)
µαβγ(−ω;−ω, ω, ω)

for this description of the third order interaction between light and matter.
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The polarization density

The degeneracy factor K(−ω;ω, ω,−ω) is calculated as

K(−ω;ω, ω,−ω) = 2l+m−np = 21+0−33 = 3/4.

From the reduced set of nonzero susceptibilities for the beam polarized in the xy-plane, and by using
the calculated value of the degeneracy factor in the convention of Butcher and Cotter, we hence have

the third order electric polarization density at ωσ = ω given as P(n)(r, t) = Re[P
(n)
ω exp(−iωt)],

with

P(3)
ω =

∑

µ

eµ(P
(3)
ω )µ

= {Using the convention of Butcher and Cotter}

=
∑

µ

eµ

[
ε0

3

4

∑

α

∑

β

∑

γ

χ
(3)
µαβγ(−ω;ω, ω,−ω)(Eω)α(Eω)β(E−ω)γ

]

= {Evaluate the sums over (x, y, z) for field polarized in the xy plane}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ωE

x
ωE

x
−ω + χ(3)

xyyxE
y
ωE

y
ωE

x
−ω + χ(3)

xyxyE
y
ωE

x
ωE

y
−ω + χ(3)

xxyyE
x
ωE

y
ωE

y
−ω]

+ ey[χ
(3)
yyyyE

y
ωE

y
ωE

y
−ω + χ(3)

yxxyE
x
ωE

x
ωE

y
−ω + χ(3)

yxyxE
x
ωE

y
ωE

x
−ω + χ(3)

yyxxE
y
ωE

x
ωE

x
−ω]}

= {Make use of E−ω = E∗
ω and relations χ(3)

xxyy = χ(3)
yyxx, etc.}

= ε0
3

4
{ex[χ(3)

xxxxE
x
ω|Exω|2 + χ(3)

xyyxE
y
ω

2Ex∗ω + χ(3)
xyxy |Eyω|2Exω + χ(3)

xxyyE
x
ω|Eyω|2]

+ ey[χ
(3)
xxxxE

y
ω|Eyω|2 + χ(3)

xyyxE
x
ω

2Ey∗ω + χ(3)
xyxy |Exω|2Eyω + χ(3)

xxyyE
y
ω|Exω|2]}

= {Make use of the intrinsic permutation symmetry}

= ε0
3

4
{ex[(χ(3)

xxxx|Exω|2 + 2χ(3)
xxyy |Eyω|2)Exω + (χ(3)

xxxx − 2χ(3)
xxyy)E

y
ω

2Ex∗ω

ey[(χ
(3)
xxxx|Eyω|2 + 2χ(3)

xxyy |Exω|2)Eyω + (χ(3)
xxxx − 2χ(3)

xxyy)E
x
ω

2Ey∗ω .

For the optical field being linearly polarized, say in the x-direction, the expression for the polar-
ization density is significantly simplified, to yield

P(3)
ω = ε0(3/4)exχ

(3)
xxxx|Exω|2Exω,

i. e. taking a form that can be interpreted as an intensity-dependent (∼ |Ex
ω|2) contribution to the

refractive index (cf. Butcher and Cotter §6.3.1).
The wave equation – Time independent case

In this example, we consider continuous wave propagation6 in optical Kerr-media, using light
polarized in the x-direction and propagating along the positive direction of the z-axis,

E(r, t) = Re[Eω(z) exp(−iωt)], Eω(z) = Aω(z) exp(ikz) = exA
x
ω(z) exp(ikz),

where, as previously, k = ωn0/c. From material handed out during the third lecture (notes on the
Butcher and Cotter convention), the nonlinear polarization density for x-polarized light is given

as P
(NL)
ω = P

(3)
ω , with

P(3)
ω = ε0(3/4)exχ

(3)
xxxx(−ω;ω, ω,−ω)|Exω|2Exω

= ε0(3/4)χ
(3)
xxxx|Eω|2Eω

= ε0(3/4)χ
(3)
xxxx|Aω|2Aω exp(ikz),

6 That is to say, a time independent problem with the temporal envelope of the electrical field
being constant in time.
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and the time independent wave equation for the field envelope Aω, using Eq. (6), becomes

∂

∂z
Aω = i

µ0ω
2

2k
ε0(3/4)χ

(3)
xxxx|Aω|2Aω exp(ikz)︸ ︷︷ ︸

=P
(NL)
ω (z)

exp(−ikz)

= i
3ω2

8c2k
χ(3)
xxxx|Aω|2Aω

= {since k = ωn0(ω)/c}

= i
3ω

8cn0
χ(3)
xxxx|Aω|2Aω,

or, equivalently, in its scalar form

∂

∂z
Axω = i

3ω

8cn0
χ(3)
xxxx|Axω|2Axω.

Boundary conditions – Time independent case

For this special case of unidirectional wave propagation, the boundary condition is simply a known
optical field at the input,

Axω(0) = {known}.

Solving the wave equation – Time independent case

If the medium of interest now is analyzed at an angular frequency far from any resonance, we may
look for solutions to this equation with |Aω(z)| being constant (for a lossless medium). For such
a case it is straightforward to integrate the final wave equation to yield the general solution

Aω(z) = Aω(0) exp[i
3ω

8cn0
χ(3)
xxxx|Aω(0)|2z],

or, again equivalently, in the scalar form

Axω(z) = Axω(0) exp[i
3ω

8cn0
χ(3)
xxxx|Axω(0)|2z],

which hence gives the solution for the real-valued electric field E(r, t) as

E(r, t) = Re[Eω(z) exp(−iωt)]
= Re{Aω(z) exp[i(kz − ωt)]}

= Re{Aω(0) exp[i(
ωn0

c
z +

3ω

8cn0
χ(3)
xxxx|Axω(0)|2z

︸ ︷︷ ︸
≡keffz

−ωt)]}.

From this solution, one immediately finds that the wave propagates with an effective propagation
constant

keff =
ω

c
[n0 +

3

8n0
χ(3)
xxxx|Axω(0)|2],

that is to say, experiencing the intensity dependent refractive index

neff = n0 +
3

8n0
χ(3)
xxxx|Axω(0)|2

= n0 + n2|Axω(0)|2,

with

n2 =
3

8n0
χ(3)
xxxx.
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Lecture 10

In this lecture, we will focus on examples of electromagnetic wave propagation in nonlinear optical
media, by applying the forms of Maxwell’s equations as obtained in the eighth lecture to a set of
particular nonlinear interactions as described by the previously formulated nonlinear susceptibility
formalism.

The outline for this lecture is:
• What are solitons?
• Basics of soliton theory
• Spatial and temporal solitons
• The mathematical equivalence between spatial and temporal solitons
• The creation of temporal and spatial solitons

What are solitons?

The first reported observation of solitons was made in 1834 by John Scott Russell, a Scottish
scientist and later famous Victorian engineer and shipbuilder, while studying water waves in the
Glasgow-Edinburgh channel. As part of this investigation, he was observing a boat being pulled
along, rapidly, by a pair of horses. For some reason, the horses stopped the boat rather suddenly,
and the stopping of the boat caused a verystrong wave to be generated. This wave, in fact, a
significant hump of water stretching across the rather narrow canal, rose up at the front of the
boat and proceeded to travel, quite rapidly down the canal. Russell, immediately, realised that
the wave was something very special. It was “alone”, in the sense that it sat on the canal with no
disturbance to the front or the rear, nor did it die away until he had followed it for quite a long
way. The word “alone” is synonymous with “solitary”, and Russell soon referred to his observation
as the Great Solitary Wave.

The word “solitary” is now routinely used, indeed even the word “solitary” tends to be re-
placed by the more generic word “soliton”. Once the physics behind Russell’s wave is understood,
however, solitons, of one kind or another, appear to be everywhere but it is interesting that the
underlying causes of soliton generation were not understood by Russell, and only partially by his
contemporaries.

Classes of solitons

Bright temporal envelope solitons

Pulses of light with a certain shape and energy that can propagate unchanged over large distances.
This is the class of solitons which we will focus on in this lecture.

Dark temporal envelope solitons

Pulses of “darkness” within a continuous wave, where the pulses are of a certain shape, and possess
propagation properties similar to the bright solitons.

Spatial solitons

Continuous wave beams or pulses, with a transverse extent of the beam that via the refractive index
change due to optical Kerr-effect can compensate for the diffraction of the beam. The optically
induced change of refractive index works as an effective waveguide for the light.
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The normalized nonlinear Schrödinger equation for temporal solitons

The starting point for the analysis of temporal solitons is the time-dependent wave equation for
the spatial envelopes of the electromagnetic fields in optical Kerr-media, here for simplicity taken
for linearly polarized light in isotropic media,

(
i
∂

∂z
+ i

1

vg

∂

∂t
− β

2

∂2

∂t2

)
Aω(z, t) = −ωn2

c
|Aω(z, t)|2Aω(z, t), (1)

where, as previously, vg = (dk/dω)−1 is the linear group velocity, and where we introduced the
notation

β =
d2k

dω2

∣∣∣
ωσ

for the second order linear dispersion of the medium, and (in analogy with Butcher and Cotter
Eq. (6.63)),

n2 = (3/8n0)χ
(3)
xxxx

for the intensity-dependent refractive index n = n0 + n2|Eω|2. Since we here are considering
wave propagation in isotropic media, with linearly polarized light (for which no polarization state
cross-talk occur), the wave equation (1) is conveniently taken in a scalar form as

(
i
∂

∂z
+ i

1

vg

∂

∂t
− β

2

∂2

∂t2

)
Aω(z, t) = −ωn2

c
|Aω(z, t)|2Aω(z, t). (2)

Equation (2) consists of three terms that interact. The first two terms contain first order derivatives
of the envelope, and these terms can be seen as the homogeneous part of a wave equation for the
envelope, giving travelling wave solutions that depend on the other two terms, which rather act
like source terms.

The third term contains a second order derivative of the envelope, and this terms is also linearly
dependent on the dispersion β of the medium, that is to say, the change of the group velocity of the
medium with respect to the angular frequency ω of the light. This term is generally responsible
for smearing out a short pulse as it traverses a dispersive medium.

Finally, the fourth term is a nonlinear source term, which depending on the sign of n2 will
concentrate higher frequency components either at the leading or trailing edge of the pulse, as
soon will be shown.

The effect of dispersion

The group velocity dispersion dvg/dω is related to the introduced dispersion parameter β ≡
d2k/dω2 as

dvg
dω

=
d

dω

[(
dk(ω)

dω

)−1
]

= −
(
dk(ω)

dω

)−2

︸ ︷︷ ︸
≡v2g

d2k(ω)

dω2︸ ︷︷ ︸
≡β

= −v2
gβ,

and hence the sign of the group velocity dispersion is the opposite of the sign of the dispersion
parameter β. In order to get a qualitative picture of the effect of linear dispersion, let us consider
the effect of the sign of β:

• β > 0:
For this case, the group velocity dispersion is negative, since

dvg
dω

= −v2
gβ < 0.

This implies that the group velocity decreases with an increasing angular frequency ω. In other
words, the “blue” frequency components of the pulse travel slower than the “red” components.
Considering the effects on the pulse as it propagates, the leading edge of the pulse will after
some distance contain a higher concentration of low (“red”) frequencies, while the trailing edge
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rather will contain a higher concentration of high (“blue”) frequencies. This effect is illustrated
in Fig. 1.

t

E
(t

)

propagation7−→ t

E
(t

)

Figure 1. Pulse propagation in a linearly dispersive medium with β > 0.

Whenever “red” frequency components travel faster than “blue” components, we usually as-
sociate this with so-called normal dispersion.

• β < 0:
For this case, the group velocity dispersion is instead positive, since now

dvg
dω

= −v2
gβ > 0.

This implies that the group velocity increases with an increasing angular frequency ω. In
other words, the “blue” frequency components of the pulse now travel faster than the “red”
components. Considering the effects on the pulse as it propagates, the leading edge of the pulse
will after some distance hence contain a higher concentration of high (“blue”) frequencies,
while the trailing edge rather will contain a higher concentration of low (“red”) frequencies.
This effect, being the inverse of the one described for a negative group velocity dispersion, is
illustrated in Fig. 2.

t

E
(t

)

propagation7−→ t

E
(t

)

Figure 2. Pulse propagation in a linearly dispersive medium with β < 0.

Whenever “blue” frequency components travel faster than “red” components, we usually as-
sociate this with so-called anomalous dispersion.

Notice that depending on the distribution of the frequency components of the pulse as it enters
a dispersive medium, the pulse may for some propagation distance actually undergo pulse com-
pression. For β > 0, this occurs if the leading edge of the pulse contain a higher concentration of
“blue” frequencies, while for β < 0, this occurs if the leading edge of the pulse instead contain a
higher concentration of “red” frequencies.
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The effect of a nonlinear refractive index

Having sorted out the effects of the sign of β on the pulse propagation, we will now focus on the
effects of a nonlinear, optical field dependent refractive index of the medium.

In order to extract the effect of the nonlinear refractive index, we will here go to the very
definition of the instantaneous angular frequency of the light from its real-valued electric field,

E(r, t) = Re[Eω(r, t) exp(−iωt)].

For light propagating in a medium where the refractive index depend on the intensity as

n(t) = n0 + n2I(t),

the spatial envelope will typically be described by an effective propagation constant (see lecture
notes as handed out during lecture nine)

keff(ω, I(t)) = (ω/c)(n0 + n2I(t)),

and the local, instantaneous angular frequency becomes

ωloc = − d

dt

{
phase of the light

}

= − d

dt
[keff(ω, I(t)) − ωt]

= − d

dt

[ω
c
(n0(ω) + n2(ω)I(t))

]
+ ω

= ω − ωn2(ω)

c

dI(t)

dt
.

The typical behaviour of the instantaneous angular frequancy ωloc(t) on a typical pulse shape is
shown in Fig. 3, for the case of n2 > 0 and a Gaussian pulse.
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Figure 3. Effect of a intensity dependent refractive index n = n0 + n2I(t) on frequency content of the pulse.

As seen in the figure, the leading edge of the pulse has a slight decrease in angular frequency,
while the trailing edge has a slight increase. This means that in the presence of an intensity
dependent refractive index, for n2 > 0, the pulse will have a concentration of “red” frequencies at
the leading edge, while the trailing edge will have a concentration of “blue” frequencies. This is
illustrated in Fig. 4.
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t

E
(t

)

Figure 4. Typical frequency chirp of an optical pulse in a nonlinear medium with n2 > 0.

If instead n2 < 0, i. e. for an intensity dependent refractive index that decrease with an
increasing intensity, the roles of the “red” and “blue” edges of the pulse are reversed.

The basic idea behind temporal solitons

As seen from Figs. 2 and 4, the effect of anomalous dispersion (with β < 0) and the effect of a
nonlinear, intensity dependent refractive index (with n2 > 0) are opposite of each other. When
combined, that is to say, considering pulse propagation in a medium which simultaneously possesses
anomalous dispersion and n2 > 0, these effects can combine, giving a pulse that can propagate
without altering its shape. This is the basic pronciple of the temporal soliton.

Normalization of the nonlinear Schrödinger equation

Equation (2) can now be cast into a normalized form, the so-called nonlinear Schrödinger equation,
by applying the change of variables1

u = τ

√
n2ω

c|β|Aω, s = (t− z/vg)/τ, ζ = |β|z/τ 2,

where τ is some characteristic time of the evolution of the pulse, usually taken as the pulse duration
time, which gives the normalized form

(
i
∂

∂ζ
− 1

2
sgn(β)

∂2

∂s2

)
u(ζ, s) + |u(ζ, s)|2u(ζ, s) = 0. (3)

This normalized equation has many interesting properties, and for some cases even analytical
solutions exist, as we will see in the following sections. Before actually solving the equation,
however, we will consider another mechanism for the generation of solitons.

1 Please note that there is a printing error in Butcher and Cotter’s book in the section that deals
with the normalization of the nonlinear Schrödinger equation. In the first line of Eq. (7.55), there
is an ambiguity of the denominator, as well as an erroneous dispersion term, and the equation

u = τ
√
n2ω/c|d2k/dω2|2Ê

should be replaced by
u = τ

√
n2ω/(c|d2k/dω2|)Ê.

(The other lines of Eq. (7.55) in Butcher and Cotter are correct.)
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Before leaving the temporal pulse propagation, a few remarks on the signs of the dispersion
term β and the nonlinear refractive index n2 should be made. Whenever β > 0, the group velocity
dispersion

dvg
dω

≡ d

dω

[(
dk

dω

)−1
]

= −
(
dk

dω

)−2
d2k

dω2
= −v2

g

d2k

dω2

will be negative, and the pulse will experience what we call a normal dispersion, for which the
refractive index of the medium decrease with an increasing wavelength of the light. This is the
“common” way dispersion enters in optical processes, where the pulse is broadened as it traverses
the medium.

Spatial solitons

As a light beam with some limited spatial extent in the transverse direction enter an optical Kerr
media, the intensity variation across the beam will via the intensity dependent refractive index
n = n0 +n2I form a lensing through the medium. Depending on the sign of the coefficient n2 (the
“nonlinear refractive index”), the beam will either experience a defocusing lensing effect (if n2 < 0)
or a focusing lensing effect (if n2 > 0); in the latter case the beam itself will create a self-induced
waveguide in the medium (see Fig. 5).

Optical Kerr-medium

Lfoc

(Self-trapping may occur)

k

x

I(x)

Figure 5. An illustration of the effect of self-focusing.

As being the most important case for beams with maximum intensity in the middle of the beam
(as we usually encounter them in most situations), we will focus on the case n2 > 0. For this case,
highly intense beams may cause such a strong focusing that the beam eventually break up again,
due to strong diffraction effects for very narrow beams, or even due to material damage in the
nonlinear crystal.

For some situations, however, there exist stationary solutions to the spatial light distribution
that exactly balance between the self-focusing and the diffraction of the beam. We can picture this
as a balance between two lensing effects, with the first one due to self-focusing, with an effective
focal length ffoc (see Fig. 6), and the second one due to diffraction, with an effective focal length
of fdefoc (see Fig. 7).
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Lfoc

(Self-trapping may occur)

k

Effective focal length: ffoc = Lfoc

x

I(x)

Figure 6. Self-focusing seen as an effective lensing of the optical beam.

Ldefoc

k

Effective focal length: fdefoc = −Ldefoc

x

I(x)

Figure 7. Diffraction seen as an effective defocusing of the optical beam.

Whenever these effects balance each other, we in this picture have the effective focal length ffoc +
fdefoc = 0.

In the electromagnetic wave picture, the propagation of an optical continuous wave in optical
Kerr-media is governed by the wave equation

∇×∇× Eω(r) − k2Eω(r) = µ0ω
2P(NL)

ω (r)

=
3

4

ω2

c2
χ(3)
xxxx|Eω(r)|2Eω(r),

(4)

with k = ωn0/c, using notations as previously introduced in this course. For simplicity we will
from now on consider the spatial extent of the beam in only one transverse Cartesian coordinate x.

By introducing the spatial envelope Aω(x, z) according to

Eω(r) = Aω(x, z) exp(ikz),

and using the slowly varying envelope approximation in the direction of propagation z, the wave
equation (4) takes the form

i
∂Aω(x, z)

∂z
+

1

2k

∂2Aω(x, z)

∂x2
= −ωn2

c
|Aω(x, z)|2Aω(x, z). (5)

Notice the strong similarity between this equation for continuous wave propagation and the equa-
tion (3) for the envelope of a infinite plane wave pulse. The only significant difference, apart from
the physical dimensions of the involved parameters, is that here nu additional first order derivative
with respect to x is present. In all other respects, Eqs. (3) and (5) are identical, if we interchange
the roles of the time t in Eq. (3) with the transverse spatial coordinate x in Eq. (5).
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While the sign of the dispersion parameter β occurring in Eq. (3) has significance for the com-
pression or broadening of the pulse, no such sign option appear in Eq. (5) for the spatial envelope of
the continuous wave beam. This follows naturally, since the spatial broadening mechanism (in con-
trary to the temporal compression or broadening of the pulse) is due to diffraction, a non-reversible
process which in nature always tend to broaden a collimated light beam.

As with Eq. (3) for the temporal pulse propagation, we may now for the continuous wave case
cast Eq. (5) into a normalized form, by applying the change of variables

u = L

√
n2ωk

c
Aω, s = x/L, ζ = z/(kL2),

where L is some characteristic length of the evolution of the beam, usually taken as the transverse
beam width, which gives the normalized form

(
i
∂

∂ζ
+

1

2

∂2

∂s2

)
u(ζ, s) + |u(ζ, s)|2u(ζ, s) = 0. (6)

Mathematical equivalence between temporal and spatial solitons

As seen in the above derivation of the normalized forms of the equations governing wave propagation
of temporal and spatial solitons, they are described by exactly the same normalized nonlinear
Schrödinger equation. The only difference between the two cases are the ways the normalization
is being carried out. In the interpretation of the solutions to the nonlinear Schrödinger equation,
the s variable could for the temporal solitons be taken as a normalized time variable, while for the
spatial solitons, the s variable could instead be taken as a normalized transverse coordinate.

Soliton solutions

The nonlinear Schrödinger equations given by Eqs. (3) and (6) possess infinitely many solutions,
of which only a few are possible to obtain analytically. In the regime where dvg/dω > 0 (i. e. for
which β < 0), an exact temporal soliton solution to Eq. (3) is though obtained when the pulse
u(ζ, s) has the initial shape

u(0, s) = N sech(s),

where N ≥ 1 is an integer number. Depending on the value of N , solitons of different order can be
formed, and the so-called “fundamental soliton” is given for N = 1. For higher values of N , the
solitons are hence called “higher order solitons”.

The first analytical solution to the nonlinear Schrödinger equation is given for N = 1 as2

u(ζ, s) = sech(s) exp(iζ/2).

The shape of this fundamental solution is shown in Fig. 8.

2 Please note that there is a printing error in Butcher and Cotter’s The Elements of Nonlinear
Optics in their expression for this solution, on page 241, row 30, where their erroneous equation
“u(ζ, s) = sech(s) exp(−iζ/2)” should be replaced by the proper one, without the minus sign in
the exponential.
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Figure 8. The fundamental bright soliton solution to the NLSE.

For higher order solitons, the behaviour is usually not stable with respect to the normalized distance
ζ, but rather of an oscillatory nature, as shown in Fig. 10.1 of the handed out material. (Figure
10.1 is copied from Govind P. Agrawal Fiber-Optic Communication systems (Wiley, New York,
1997).) This figure shows the fundamental soliton together with the third order (N = 3) soliton,
and one can see that there is a continuous, oscillatory energy transfer in the s-direction of the
pulse. (See also Butcher and Cotter’s Fig. 7.8 on page 242, where the N = 4 soliton is shown.)

The solutions so far discussed belong to a class called “bright solitons”. The reason for using the
term “bright soliton” becomes more clear if we consider another type of solutions to the nonlinear
Schrdinger equation, namely the “dark” solitons, given as the solutions

u(ζ, s) = [η tanh(η(s− κζ)) − iκ] exp(iu2
0ζ),

with u0 being the normalized amplitude of the continuous-wave background, φ is an internal phase
angle in the range 0 ≤ φ ≤ π/2, and

η = u0 cosφ, κ = u0 sinφ.

For the dark solitons, one makes a distinction between the “black” soliton for φ = 0, which drops
down to zero intensity in the middle of the pulse, and the “grey” solitons for φ 6= 0, which do not
drop down to zero. For the black solitons, the solution for φ = 0 takes ths simpler form

u(ζ, s) = u0 tanh(u0s) exp(iu2
0ζ).

The shape of the black fundamental soliton is shown in Fig. 9.
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Figure 9. The fundamental dark (black) soliton solution to the NLSE.
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Another important difference between the bright and the dark soliton, apart from their obvious
difference in appearances, is that the velocity of a dark soliton depends on its amplitude, through
the internal phase angle u2

0ζ. This is not the case for the bright solitons, which propagate with the
same velocity irregardless of the amplitude.

The darks soliton is easily pictured as a dark travelling pulse in an otherwise continuous level
background intensity. The described dark solitons, however, are equally well applied to spatial
solitons as well, for the case n2 > 0, where a dark center of the beam causes a slightly lower refrac-
tive index than for the illuminated surroundings, hence generating an effective “anti-waveguide”
that compensates for the diffraction experianced by the black center.

General travelling wave solutions

It should be emphasized that the nonlinear Schrödinger equation permits travelling wave solutions
as well. On example of such an exact solution is given by

u(ζ, s) = a sech[a(s− cζ/
√

2)] exp[ic(s
√

2 − cζ)/2 + inζ]

where n = (1/2)(a2 + c2/2). That this in fact is a solution to the nonlinear Schrödinger equation,

(
i
∂

∂ζ
+

1

2

∂2

∂s2

)
u(ζ, s) + |u(ζ, s)|2u(ζ, s) = 0,

(here for simplicity taken for the special case sgn(β) = −1) is straightforward to verify by, for
example, using the following MapleV blocks:

restart:

assume(s,real);

assume(zeta,real);

assume(a,real);

assume(c,real);

n:=(1/2)*(a^2+c^2/2);

u(zeta,s):=a*sech(a*(s*sqrt(2)-c*zeta)/sqrt(2))

*exp(I*((c/2)*(s*sqrt(2)-c*zeta)+n*zeta));

nlse:=I*diff(u(zeta,s),zeta)+(1/2)*diff(u(zeta,s),s$2)

+conjugate(u(zeta,s))*u(zeta,s)^2;

simplify(nlse);

For further information regarding travelling wave solutions and higher order soliton solutions to
the nonlinear Schrödinger equation, see P. G. Johnson and R. S. Drazin, Solitons: an introduction
(Cambridge Univrsity Press, Cambridge, 1989).

Soliton interactions

One can understand the implications of soliton interaction by solving the NLSE numerically with
the input amplitude consisting of a soliton pair

u(0, τ) = sech(τ − q0) + r sech[r(τ + q0)] exp(iϑ)

with, as previously, sech(x) ≡ 1/ cosh(x), and r is the relative amplitude of the second soliton with
respect to the other, ϑ the phase difference, and 2q0 the initial, normalized separation between the
solitons.

A set of computer generated solutions to this pair of initial soliton shapes are shown in the
handed-out Fig. 10.6 of Govind P. Agrawal Fiber-Optic Communication systems (Wiley, New York,
1997). In this figure, the upper left graph shows that a pair of solitons may, as a matter of fact,
attract each other, forming a soliton pair which oscillate around the center of the moving reference
frame.

Another interesting point is that soliton pairs may be formed by spatial solitons as well. In
Fig. 9 of the handed-out material, the self-trapping of two spatial solitons, launched with initial
trajectories that do not lie in the same plane, are shown. In this experiment, carried out by Mitchell
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et. al. at Princeton3, the two solitons start spiraling around each other in a helix, experiencing
attractive forces that together with the orbital momentum carried by the pulses form a stable
configuration.

Dependence on initial conditions

For a real situation, one might ask oneself how sensitive the forming of solitons is, depending on
perturbations on the preferred sech(s) initial shape. In a real situation, for example, we will rarely
be able to construct the exact pulse form required for launching a pulse that will possess the soliton
properties already from the beginning.

As a matter of fact, the soliton formation process accepts quite a broad range of initial pulse
shapes, and as long as the initial intensity is sufficiently well matched to the energy content of
the propagating soliton, the generated soliton is remarkable stable against perurbations. In a
functional theoretical analogy, we may call this the soliton “acceptance angle” of initial functions
that will be accepted for soliton formation in a medium.

In order to illustrate the soliton formation, one may study Figs. 10.2 and 10.3 of Govind
P. Agrawal Fiber-Optic Communication systems (Wiley, New York, 1997)4 In Fig. 10.2, the input
pulse shape is a Gaussian, rather than the natural sech(s) initial shape. As can be seen in the figure,
the pulse shape gradually change towards the fundamental soliton, even though the Gaussian shape
is a quite bad approximation to the final sech(s) form.

The forming of the soliton does not only depend on the initial shape of the pulse, but also
on the peak intensity of the pulse. In Fig. 10.3, an ideal sech(s) pulse shape, though with a 20
percent higher pulse amplitude than the ideal one of unity, is used as input. In this case the pulse
slightly oscillate in amplitude during the propagation, but finally approaching the fundamental
soliton solution.

Finally, as being an example of an even worse approximation to the sech(s) shape, a square
input pulse can also generate solitons, as shown in the handed-out Fig. 16 of Beam Shaping and
Control with Nonlinear Optics, Eds. F. Kajzar and R. Reinisch (Plenum Press, New York, 1998).

3 M. Mitchell, Z. Chen, M. Shih, and M. Sageev, Phys. Rev. Lett. 77, 490 (1996).
4 The same pictures can be found in Govind P. Agrawal Nonlinear Fiber Optics (Academic Press,

New York, 1989).
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Lecture 11

In this lecture, we will focus on configurations where the angular frequency of the light is close to
some transition frequency of the medium. In particular, we will start with a brief outline of how
the non-resonant susceptibilities may be modified in such a way that weakly resonant interactions
can be taken into account. Having formulated the susceptibilities at weakly resonant interaction,
we will proceed with formulating a non-perturbative approach of calculation of the polarization
density of the medium. For the two-level system, this results in the Bloch equations governing
resonant interaction between light and matter.

The outline for this lecture is:
• Singularities of the non-resonant susceptibilities
• Alternatives to perturbation analysis of the polarization density
• Relaxation of the medium
• The two-level system and the Bloch equation
• The resulting polarization density of the medium at resonance

Singularities of non-resonant susceptibilities

In the theory described so far in this course, all interactions have for simplicity been considered
as non-resonant. The explicit forms of the susceptibilities, in terms of the electric dipole moments
and transition frequencies of the molecules, have been obtained in lecture six, of the forms

χ(1)
µα(−ω;ω) ∼ rµabr

α
ba

Ωba − ω
+ {similar terms}, [B.& C. (4.58)]

χ
(2)
µαβ(−ωσ;ω1, ω2) ∼

rµabr
α
bcr

β
ca

(Ωba − ω1 − ω2)(Ωca − ω2)
+ {similar terms}, [B.& C. (4.63)]

χ
(3)
µαβγ(−ωσ;ω1, ω2, ω3) ∼

rµabr
α
bcr

β
cdr

γ
da

(Ωba − ω1 − ω2 − ω3)(Ωca − ω2 − ω3)(Ωda − ω3)
+ {similar terms},

[B.& C. (4.64)]

...

To recapitulate, these forms have all been derived under the assumption that the Hamiltonian
(which is the general operator which describes the state of the system) consist only of a thermal
equilibrium part and an interaction part (in the electric dipolar approximation), of the form

Ĥ = Ĥ0 + ĤI(t).

This is a form which clearly does not contain any term related to relaxation effects of the medium,
that is to say, it does not contain any term describing any energy flow into thermal heat. As long
as we consider the interaction part of the Hamiltonian to be sufficiently strong compared to any
relaxation effect of the medium, this is a valid approximation.

However, the problem with the non-resonant forms of the susceptibilities clearly comes into
light when we consider an angular frequency of the light that is close to a transition frequency of
the system, since for the first order susceptibility,

χ(1)
µα(−ω;ω) → ∞, when ω → Ωba,
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or for the second order susceptibility,

χ
(2)
µαβ(−ω;ω1, ω2) → ∞, when ω1 + ω2 → Ωba or ω2 → Ωca.

This clearly non-physical behaviour is a consequence of that the denominators of the rational
expressions for the susceptibilities have singularities at the resonances, and the aim with this
lecture is to show how these singularities can be removed.

Modification of the Hamiltonian for resonant interaction

Whenever we have to consider relaxation effects of the medium, as in the case of resonant interac-
tions, the Hamiltonian should be modified to

Ĥ = Ĥ0 + ĤI(t) + ĤR, (1)

where, as previously, Ĥ0 is the Hamiltonian in the absence of external forces, ĤI(t) = −Q̂αEα(r, t)
is the interaction Hamiltonian (here taken in the Schrödinger picture, as described in lecture four),
being linear in the applied electric field of the light, and where the new term ĤR describes the
various relaxation processes that brings the system into the thermal equilibrium whenever ex-
ternal forces are absent. The state of the system (atom, molecule, or general ensemble) is then
conveniently described by the density operator formalism, from which we can obtain macroscopi-
cally observable parameters of the medium, such as the electric polarization density (as frequently
encountered in this course), the magnetization of the medium, current densities, etc.

The form (1) of the Hamiltonian is now to be analysed by means of the equation of motion of
the density operator ρ̂,

i~
dρ̂

dt
= Ĥρ̂− ρ̂Ĥ = [Ĥ, ρ̂], (2)

and depending on the setup, this equation may be solved by means of perturbation analysis (for
non-resonant and weakly resonant interactions), or by means of non-perturbative approaches, such
as the Bloch equations (for strongly resonant interactions).

Phenomenological representation of relaxation processes

In many cases, the relaxation process of the medium towards thermal equilibrium can be described
by

[ĤR, ρ̂] = −i~Γ̂(ρ̂− ρ̂0),

where ρ̂0 is the thermal equilibrium density operator of the system. The here phenomenologically
introduced operator Γ̂ describes the relaxation of the medium, and can can be considered as being
independent of the interaction Hamiltonian. Here the operator Γ̂ has the physical dimension of an
angular frequency, and its matrix elements can be considered as giving the time constants of decay
for various states of the system.

Perturbation analysis of weakly resonant interactions

Before entering the formalism of the Bloch equations for strongly resonant interactions, we will
outline the weakly resonant interactions in a perturbative analysis for the susceptibilities, as pre-
viously developed in lectures three, four, and five.

By taking the perturbation series for the density operator as

ρ̂(t) = ρ̂0︸︷︷︸
∼[E(t)]0

+ ρ̂1(t)︸ ︷︷ ︸
∼[E(t)]1

+ ρ̂2(t)︸ ︷︷ ︸
∼[E(t)]2

+ . . .+ ρ̂n(t)︸ ︷︷ ︸
∼[E(t)]n

+ . . . ,
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as we previously did for the strictly non-resonant case, one obtains the system of equations

i~
dρ̂0

dt
= [Ĥ0, ρ̂0],

i~
dρ̂1(t)

dt
= [Ĥ0, ρ̂1(t)] + [ĤI(t), ρ̂0] − i~Γ̂ρ̂1(t),

i~
dρ̂2(t)

dt
= [Ĥ0, ρ̂2(t)] + [ĤI(t), ρ̂1(t)] − i~Γ̂ρ̂2(t),

...

i~
dρ̂n(t)

dt
= [Ĥ0, ρ̂n(t)] + [ĤI(t), ρ̂n−1(t)] − i~Γ̂ρ̂n(t),

...

As in the non-resonant case, one may here start with solving for the zeroth order term ρ̂0, with all
other terms obtained by consecutively solving the equations of order j = 1, 2, . . . , n, in that order.

Proceeding in exactly the same path as for the non-resonant case, solving for the density
operator in the interaction picture and expressing the various terms of the electric polarization
density in terms of the corresponding traces

Pµ(r, t) =

∞∑

n=0

P (n)
µ (r, t) =

1

V

∞∑

n=0

Tr[ρ̂n(t)Q̂µ],

one obtains the linear, first order susceptibility of the form

χ(1)
µα(−ω;ω) =

Ne2

ε0~

∑

a

%0(a)
∑

b

( rµabr
α
ba

Ωba − ω − iΓba
+

rαabr
µ
ba

Ωba + ω − iΓba

)
.

Similarly, the second order susceptibility for weakly resonant interaction is obtained as

χ
(2)
µαβ(−ωσ;ω1, ω2)

=
Ne3

ε0~2

1

2!
S

∑

a

%0(a)
∑

b

∑

c

{ rµabr
α
bcr

β
ca

(Ωac + ω2 − iΓac)(Ωab + ωσ − iΓab)

− rαabr
µ
bcr

β
ca

(Ωac + ω2 − iΓac)(Ωbc + ωσ − iΓbc)
− rβabr

µ
bcr

α
ca

(Ωba + ω2 − iΓba)(Ωbc + ωσ − iΓbc)

+
rβabr

α
bcr

µ
ca

(Ωba + ω2 − iΓba)(Ωca + ωσ − iΓca)

}
.

In these expressions for the susceptibilities, the singularities at resonance are removed, and the
spectral properties of the absolute values of the susceptibilities are described by regular Lorenzian
line shapes.

The values of the matrix elements Γmn are in many cases difficult to derive from a theoretical
basis; however, they are often straightforward to obtain by regular curve-fitting and regression
analysis of experimental data.

As seen from the expressions for the susceptibilities above, we still have a boosting of them close
to resonance (resonant enhancement). However, the values of the susceptibilities reach a plateau
at exact resonance, with maximum values determined by the magnitudes of the involved matrix
elements Γmn of the relaxation operator.
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Validity of perturbation analysis of the polarization density

Strictly speaking, the perturbative approach is only to be considered as for an infinite series
expansion. For a limited number of terms, the perturbative approach is only an approximative
method, which though for many cases is sufficient.

The perturbation series, in the form that we have encountered it in this course, defines a power
series in the applied electric field of the light, and as long as the lower order terms are dominant in
the expansion, we may safely neglect the higher order ones. Whenever we encounter strong fields,
however, we may run into trouble with the series expansion, in particular if we are in a resonant
optical regime, with a boosting effect of the polarization density of the medium. (This boosting
effect can be seen as the equivalent to the close-to-resonance behaviour of the mechanical spring
model under influence of externally driving forces.)

As an illustration to this source of failure of the model in the presence of strong electrical fields,
we may consider another, more simple example of series expansions, namely the Taylor expansion
of the function sin(x) around x ≈ 0, as shown in Fig. 1.

0 1 2 3 4 5 6 7
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−1
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 x

 f(
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 f(x) = p
3
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5
(x)

 f(x) = p
7
(x)

 f(x) = sin(x)     

Figure 1. Approximations to f(x) = sin(x) by means of power series expansions of various degrees.

In analogy to the susceptibility formalism, we may consider x to have the role of the electric
field (the variable which we make the power expansion in terms of), and sin(x) to have the role of
the polarization density or the density operator (simply the function we wish to analyze). For low
numerical values of x, up to about x ≈ 1, the sin(x) function is well described by keeping only the
first two terms of the expansion, corresponding to a power expansion up to and including order
three,

sin(x) ≈ p3(x) = x− x3

3!
.

For higher values of x, say up to about x ≈ 2, the expansion is still following the exact function to
a good approximation if we include also the third term, corresponding to a power expansion up to
and including order five,

sin(x) ≈ p5(x) = x− x3

3!
+
x5

5!
.

This necessity of including higher and higher order terms goes on as we increase the value of x,
and we can from the graph also see that the breakdown at a certain level of approximation causes
severe difference between the approximate and exact curves. In particular, if one wish to calculate
the value of the function sin(x) for small x, it might be a good idea to apply the series expansion.
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For greater values of x, say x ≈ 10, the series expansion approach is, however, a bad idea, and an
efficient evaluation of sin(x) requires another approach.

As a matter of fact, the same arguments hold for the more complex case of the series expansion
of the density operator1, for which we for high intensities (high electrical field strengths) must
include higher order terms as well.

However, we have seen that even in the non-resonant case, we may encounter great algebraic
complexity even in low order nonlinear terms, and since the problem of formulating a proper
polarization density is expanding more or less exponentially with the order of the nonlinearity, the
usefulness of the susceptibility formalism eventually breaks down. The solution to this problem is
to identify the relevant transitions of the ensemble, and to solve the equation of motion (2) exactly
instead (or at least within other levels of approximation which do not rely on the perturbative
foundation of the susceptibility formalism).

The two-level system

In many cases, the interaction between light and matter can be reduced to that of a two-level
system, consisting of only two energy eigenstates |a〉 and |b〉. The equation of motion of the
density operator is generally given by Eq. (2) as

i~
dρ̂

dt
= [Ĥ, ρ̂],

with

Ĥ = Ĥ0 + ĤI(t) + ĤR.

For the two-level system, the equation of motion can be expressed in terms of the matrix elements
of the density operator as

i~
dρaa
dt

= [Ĥ0, ρ̂]aa + [ĤI(t), ρ̂]aa + [ĤR, ρ̂]aa, (3a)

i~
dρab
dt

= [Ĥ0, ρ̂]ab + [ĤI(t), ρ̂]ab + [ĤR, ρ̂]ab, (3b)

i~
dρbb
dt

= [Ĥ0, ρ̂]bb + [ĤI(t), ρ̂]bb + [ĤR, ρ̂]bb, (3c)

where the fourth equation for ρba was omitted, since the solution for this element immediately
follows from

ρba = ρ∗ab.

Terms involving the thermal equilibrium Hamiltonian

The system of Eqs. (3) is the starting point for derivation of the so-called Bloch equations. Starting
with the thermal-equilibrium part of the commutators in the right-hand sides of Eqs. (3), we have
for the diagonal elements

[Ĥ0, ρ̂]aa = 〈a|Ĥ0ρ̂|a〉 − 〈a|ρ̂Ĥ0|a〉
=

∑

k

〈a|Ĥ0|k〉︸ ︷︷ ︸
=Eaδak

〈k|ρ̂|a〉 −
∑

j

〈a|ρ̂|j〉 〈j|Ĥ0|a〉︸ ︷︷ ︸
=Ejδja

= Eaρaa − ρaaEa

= 0

= [Ĥ0, ρ̂]bb,

1 We may recall that the series expansion of the density operator is the very origin of the expansion
of the polarization density of the medium in terms of the electric field, and hence also the very
foundation for the whole susceptibility formalism as described in this course.
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and for the off-diagonal elements

[Ĥ0, ρ̂]ab = 〈a|Ĥ0ρ̂|b〉 − 〈a|ρ̂Ĥ0|b〉
=

∑

k

〈a|Ĥ0|k〉︸ ︷︷ ︸
=Eaδak

〈k|ρ̂|b〉 −
∑

j

〈a|ρ̂|j〉 〈j|Ĥ0|b〉︸ ︷︷ ︸
=Ejδjb

= Eaρab − ρabEb

= −(Eb − Ea)ρab

= −~Ωbaρab

Terms involving the interaction Hamiltonian

For the commutators in the right-hand sides of Eqs. (3) involving the interaction Hamiltonian, we
similarly have for the diagonal elements

[ĤI(t), ρ̂]aa = 〈a|(−er̂αEα(r, t))ρ̂|a〉 − 〈a|ρ̂(−er̂αEα(r, t))|a〉

= −eEα(r, t)

{∑

k

〈a|r̂α|k〉〈k|ρ̂|a〉 −
∑

j

〈a|ρ̂|j〉〈j|r̂α|a〉
}

= −eEα(r, t)

{
rαaaρaa + rαabρba − ρaar

α
aa − ρabr

α
ba

}

= −e(rαabρba − rαbaρab)Eα(r, t)

= −[ĤI(t), ρ̂]bb,

and for the off-diagonal elements

[ĤI(t), ρ̂]ab = 〈a|(−er̂αEα(r, t))ρ̂|b〉 − 〈a|ρ̂(−er̂αEα(r, t))|b〉

= −eEα(r, t)

{∑

k

〈a|r̂α|k〉〈k|ρ̂|b〉 −
∑

j

〈a|ρ̂|j〉〈j|r̂α|b〉
}

= −eEα(r, t)

{
rαaaρab + rαabρbb − ρaar

α
ab − ρabr

α
bb

}

= −erαabEα(r, t)(ρbb − ρaa) − e(rαaa − rαbb)Eα(r, t)ρab

= {Optical Stark shift : δEk ≡ −erαkkEα(r, t), k = a, b}
= −erαabEα(r, t)(ρbb − ρaa) + (δEa − δEb)ρab.

Terms involving relaxation processes

For the commutators describing relaxation processes, the diagonal elements are given as

[ĤR, ρ̂]aa = −i~(ρaa − ρ0(a))/Ta,

[ĤR, ρ̂]bb = −i~(ρbb − ρ0(b))/Tb,

where Ta and Tb are the decay rates towards the thermal equilibrium at respective level, and where
ρ0(a) and ρ0(b) are the thermal equilibrium values of ρaa and ρbb, respectively (i. e. the thermal
equilibrium population densities of the respective level). The off-diagonal elements are similarly
given as

[ĤR, ρ̂]ab = −i~ρab/T2,

[ĤR, ρ̂]ba = −i~ρba/T2.

A common approximation is to consider the two states |a〉 and |b〉 to be sufficiently similar in
order to approximate their lifetimes as equal, i. e. Ta ≈ Tb ≈ T1, where T1 for historical reasons
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is denoted as the longitudinal relaxation time. For the same historical reason, the relaxation time
T2 is denoted as the transverse relaxation time.2

As the above matrix elements of the commutators involving the various terms of the Hamilto-
nian are inserted into the right-hand sides of Eqs. (3), one obtains the following system of equations
for the matrix elements of the density operator,

i~
dρaa
dt

= −e(rαabρba − rαbaρab)Eα(r, t) − i~(ρaa − ρ0(a))/Ta, (4a)

i~
dρab
dt

= −~Ωbaρab − erαabEα(r, t)(ρbb − ρaa) + (δEa − δEb)ρab − i~ρab/T2, (4b)

i~
dρbb
dt

= e(rαabρba − rαbaρab)Eα(r, t) − i~(ρbb − ρ0(b))/Tb. (4c)

(The system of equations (4) corresponds to Butcher and Cotter’s Eqs. (6.35).) So far, the applied
electric field of the light is allowed to be of arbitrary form. However, in order to simplify the
following analysis, we will assume the light to be linearly polarized and quasimonochromatic, of
the form

Eα(r, t) = Re[Eαω(t) exp(−iωt)].

We will in addition assume the slowly varying temporal envelope Eαω (t) to be real-valued, and we
will also neglect the optical Stark shifts δEa and δEb. In the absence of strong static magnetic
fields, we may also assume the matrix elements erαab to be real-valued. When these assumptions
and approximations are applied to the equations of motion (4), one obtains

dρaa
dt

= i(ρba − ρab)β(t) cos(ωt) − (ρaa − ρ0(a))/Ta, (5a)

dρab
dt

= iΩbaρab + iβ(t) cos(ωt)(ρbb − ρaa) − ρab/T2, (5b)

dρbb
dt

= −i(ρba − ρab)β(t) cos(ωt) − (ρbb − ρ0(b))/Tb, (5c)

where the Rabi frequency β(t), defined in terms of the spatial envelope of the electrical field and
the transition dipole moment as

β(t) = erαabE
α
ω(t)/~ = erab · Eω(t)/~,

was introduced.

The rotating-wave approximation

In the middle equation of the system (5), we have a time-derivative of ρab in the left-hand side,
while we in the right-hand side have a term iΩbaρab. Seen as the homogeneous part of a linear
differential equation, this suggests that we may further simplify the equations of motion by taking
a new variable ρΩ

ab according to the variable substitution

ρab = ρΩ
ab exp[i(Ωba − ∆)t], (6)

where ∆ ≡ Ωba − ω is the detuning of the angular frequency of the light from the transition
frequency Ωba ≡ (Eb − Ea)/~.

2 For a deeper discusssion and explanation of the various mechanisms involved in relaxation,
see for example Charles P. Slichter, Principles of Magnetic Resonance (Springer-Verlag, Berlin,
1978), available at KTHB. This reference is not mentioned in Butcher and Cotters book, but it is
a very good text on relaxation phenomena and how to incorporate them into a density-functional
description of interaction between light and matter.
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By inserting Eq. (6) into Eqs. (5), keeping in mind that ρba = ρ∗ab, one obtains the system

dρaa
dt

= i(ρΩ
ba exp[−i(Ωba − ∆)t] − ρΩ

ab exp[i(Ωba − ∆)t])β(t) cos(ωt) − (ρaa − ρ0(a))/Ta, (6a)

dρΩ
ab

dt
= i∆ρΩ

ab + iβ(t) cos(ωt) exp[−i(Ωba − ∆)t](ρbb − ρaa) − ρΩ
ab/T2, (6b)

dρbb
dt

= −i(ρΩ
ba exp[−i(Ωba − ∆)t] − ρΩ

ab exp[i(Ωba − ∆)t])β(t) cos(ωt) − (ρbb − ρ0(b))/Tb, (6c)

The idea with the rotating-wave approximation is now to separate out rapidly oscillating terms of
angular frequencies ω+ Ωba and −(ω+ Ωba), and neglect these terms, compared with more slowly
varying terms. The motivation for this approximation is that whenever high-frequency components
appear in the equations of motions, the high-frequency terms will when integrated contain large
denominators, and will hence be minor in comparison with terms with a slow variation. In some
sense we can also see this as a temporal averaging procedure, where rapidly oscillating terms
average to zero rapidly compared to slowly varying (or constant) components.

For example, in Eq. (6b), the product of the cos(ωt) and the exponential function is approxi-
mated as

cos(ωt) exp[−i(Ωba − ∆)t] =
1

2
[exp(iωt) + exp(−iωt)] exp[−i (Ωba − ∆)︸ ︷︷ ︸

=ω

t]

=
1

2
[1 + exp(−i2ωt)] → 1

2
,

while in Eqs. (6a) and (6c), the same argument gives

exp[i(Ωba − ∆)t] cos(ωt) =
1

2
[exp(iωt) + exp(−iωt)] exp[−i (Ωba − ∆)︸ ︷︷ ︸

=ω

t]

=
1

2
[exp(i2ωt) + 1] → 1

2
.

By applying this rotating-wave approximation, the equations of motion (6) hence take the form

dρaa
dt

=
i

2
(ρΩ
ba − ρΩ

ab)β(t) − (ρaa − ρ0(a))/Ta, (7a)

dρΩ
ab

dt
= i∆ρΩ

ab +
i

2
β(t)(ρbb − ρaa) − ρΩ

ab/T2, (7b)

dρbb
dt

= − i

2
(ρΩ
ba − ρΩ

ab)β(t) − (ρbb − ρ0(b))/Tb. (7c)

In this final form, before entering the Bloch vector description of the interaction, these equations
correspond to Butcher and Cotter’s Eqs. (6.41).

The Bloch equations

Assuming the two states |a〉 and |b〉 to be sufficiently similar in order to approximate Ta ≈ Tb ≈ T1,
where T1 is the longitudinal relaxation time, and by taking new variables (u, v, w) according to

u = ρΩ
ba + ρΩ

ab,

v = i(ρΩ
ba − ρΩ

ab),

w = ρbb − ρaa,

the equations of motion (7) are cast in the Bloch equations

du

dt
= −∆v − u/T2, (8a)

dv

dt
= ∆u+ β(t)w − v/T2, (8b)

dw

dt
= −β(t)v − (w − w0)/T1. (8c)
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In these equations, the introduced variable w describes the population inversion of the two-level
system, while u and v are related to the dispersive and absorptive components of the polarization
density of the medium. In the Bloch equations above, w0 = ρ0(b)−ρ0(a) is the thermal equilibrium
inversion of the system with no optical field applied.

The resulting electric polarization density of the medium

The so far developed theory of the density matrix under resonant interaction can now be applied
to the calculation of the electric polarization density of the medium, consisting of N identical
molecules per unit volume, as

Pµ(r, t) = N〈er̂µ〉
= N Tr[ρ̂er̂µ]

= N
∑

k=a,b

〈k|ρ̂er̂µ|k〉

= N
∑

k=a,b

∑

j=a,b

〈k|ρ̂|j〉〈j|er̂µ|k〉

= N
∑

k=a,b

{〈k|ρ̂|a〉〈a|er̂µ|k〉 + 〈k|ρ̂|b〉〈b|er̂µ|k〉}

= N {〈a|ρ̂|a〉〈a|er̂µ|a〉 + 〈b|ρ̂|a〉〈a|er̂µ|b〉 + 〈a|ρ̂|b〉〈b|er̂µ|a〉 + 〈b|ρ̂|b〉〈b|er̂µ|b〉}
= N(ρbaer

µ
ab + ρaber

µ
ba)

= {Make use of ρab = (u+ iv) exp(iωt) = ρ∗ba}
= N [(u− iv) exp(−iωt)erµab + (u+ iv) exp(iωt)erµba].

The temporal envelope P µω of the polarization density, throughout this course as well as in Butcher
and Cotter’s book, is taken as

Pµ(r, t) = Re[Pµω exp(−iωt)],

and by identifying this expression with the right-hand side of the result above, we hence finally
have obtained the polarization density in terms of the Bloch parameters (u, v, w) as

Pµω (r, t) = Nerµab(u− iv).

This expression for the temporal envelope of the polarization density is exactly in the same mode
of description as the one as previously used in the susceptibility theory, as in the wave equations
developed in lecture eight. The only difference is that now we instead consider the polarization
density as given by a non-perturbative analysis. Taken together with the Maxwell’s equations (or
the proper wave equation for the envelopes of the fields), the Bloch equations are known as the
Maxwell–Bloch equations.
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Lecture 12

In this final lecture, we will study the behaviour of the Bloch equations in different regimes of
resonance and relaxation. The Bloch equations are formulated as a vector model, and numerical
solutions to the equations are discussed.

For steady-state interaction, the polarization density of the medium, as obtained from the
Bloch equations, is expressed in a closed form. The closed solution is then expanded in a power
series, which when compared with the series obtained from the susceptibility formalism finally tie
together the Bloch theory with the susceptibilities.

The outline for this lecture is:
• Recapitulation of the Bloch equations
• The vector model of the Bloch equations
• Special cases and examples
• Steady-state regime
• The intensity dependent refractive index at steady-state
• Comparison with the susceptibility model

Recapitulation of the Bloch equations for two-level systems

Assuming two states |a〉 and |b〉 to be sufficiently similar in order for their respective lifetimes Ta ≈
Tb ≈ T1 to hold, where T1 is the longitudinal relaxation time, the Bloch equations for the two-level
are given as

du

dt
= −∆v − u/T2, (1a)

dv

dt
= ∆u+ β(t)w − v/T2, (1b)

dw

dt
= −β(t)v − (w − w0)/T1, (1c)

where β ≡ erαabE
α
ω(t)/~ is the Rabi frequency, being a quantity linear in the applied electric field

of the light, ∆ ≡ Ωba − ω is the detuning of the angular frequency of the light from the transition
frequency Ωba ≡ (Eb − Ea)/~, and where the variables (u, v, w) are related to the matrix elements
ρmn of the density operator as

u = ρΩ
ba + ρΩ

ab,

v = i(ρΩ
ba − ρΩ

ab),

w = ρbb − ρaa.

In these equations, ρΩ
ab is the temporal envelope of the off-diagonal elements, given by

ρab ≡ ρΩ
ab exp[i(Ωba − ∆)t].

In the Bloch equations (1), the variable w describes the population inversion of the two-level
system, while u and v are related to the dispersive and absorptive components of the polarization
density of the medium. In the Bloch equations, w0 ≡ ρ0(b) − ρ0(a) is the thermal equilibrium
inversion of the system with no optical field applied.
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The resulting electric polarization density of the medium

The so far developed theory of the density matrix under resonant interaction can now be applied
to the calculation of the electric polarization density of the medium, consisting of N identical
molecules per unit volume, as

Pµ(r, t) = N〈er̂µ〉
= N Tr[ρ̂er̂µ]

= N
∑

k=a,b

〈k|ρ̂er̂µ|k〉

= N
∑

k=a,b

∑

j=a,b

〈k|ρ̂|j〉〈j|er̂µ|k〉

= N
∑

k=a,b

{〈k|ρ̂|a〉〈a|er̂µ|k〉 + 〈k|ρ̂|b〉〈b|er̂µ|k〉}

= N {〈a|ρ̂|a〉〈a|er̂µ|a〉 + 〈b|ρ̂|a〉〈a|er̂µ|b〉 + 〈a|ρ̂|b〉〈b|er̂µ|a〉 + 〈b|ρ̂|b〉〈b|er̂µ|b〉}
= N(ρbaer

µ
ab + ρaber

µ
ba)

= {Make use of ρab = (u+ iv) exp(iωt) = ρ∗ba}
= N [(u− iv) exp(−iωt)erµab + (u+ iv) exp(iωt)erµba].

The temporal envelope P µω of the polarization density is throughout this course as well as in Butcher
and Cotter’s book taken as

Pµ(r, t) = Re[Pµω exp(−iωt)],

and by identifying this expression with the right-hand side of the result above, we hence finally
have obtained the polarization density in terms of the Bloch parameters (u, v, w) as

Pµω (r, t) = Nerµab(u− iv). (2)

This expression for the temporal envelope of the polarization density is exactly in the same mode
of description as the one as previously used in the susceptibility theory, as in the wave equations
developed in lecture eight. The only difference is that now we instead consider the polarization
density as given by a non-perturbative analysis. Taken together with the Maxwell’s equations (or
the propern wave equation for the envelopes of the fields), the Bloch equations are known as the
Maxwell–Bloch equations.

From Eq. (2), it should now be clear that the Bloch variable u essentially gives the in-phase
part of the polarization density (at least in this case, where we may consider the transition dipole
moments to be real-valued), corresponding to the dispersive components of the interaction between
light and matter, while the Bloch variable v on the other hand gives terms which are shifted ninety
degrees out of phase with the optical field, hence corresponding to absorptive terms.
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The vector model of the Bloch equations

In the form of Eqs. (1), the Bloch equations can be expressed in the form of an Euler equation as

dR

dt
= Ω × R − (u/T2, v/T2, (w − w0)/T1)︸ ︷︷ ︸

relaxation term

, [B.& C. (6.54)]

where R = (u, v, w) is the so-called Bloch vector, that in the abstract (eu, ev, ew)-space describes
the state of the medium, and

Ω = (−β(t), 0,∆)

is the vector that gives the precession of the Bloch vector (see Fig. 1).
This form, originally proposed in 1946 by Felix Bloch1 for the motion of a nuclear spin in

a magnetic field under influence of radio-frequency electromagnetic fields, and later on adopted
by Feynman, Vernon, and Hellwarth2 for solving problems in maser theory3, corresponds to the
motion of a damped gyroscope in the presence of a gravitational field. In this analogy, the vector
Ω can be considered as the torque vector of the spinning top of the gyroscope.

u

v

w

Ω

R(t)

R∞ = (0, 0, w0)
−β

∆

Figure 1. Evolution of the Bloch vector R(t) = (u(t), v(t), w(t)) around the “torque vector”
Ω = (−β(t), 0,∆). In the absence of optical fields, the Bloch vector relax towards the thermal
equilibrium state R∞ = (0, 0, w0), where w0 = ρ(b) − ρ(a) is the molecular population inversion
at thermal equilibrium. At moderate temperatures, the thermal equilibrium population inversion
is very close to w0 = −1.

From the vector form of the Bloch equations, it is found that the Bloch vector rotates around
the torque vector Ω as the state of matter approaches steady state. For an adiabatically changing
applied optical field (i. e. a slowly varying envelope of the field), this precession follows the torque
vector.

The relaxation term in the vector Bloch equations also tells us that the relaxation along the
w-direction is given by the time constant T1, while the relaxation in the (u, v)-plane instead is
given by the time constant T2. By considering the w-axis as the “longitudinal” direction and the
(u, v)-plane as the “transverse” plane, the terminology for T1 as being the “longitudinal relaxation
time” and T2 as being the “transverse relaxation time” should hence be clear.

1 F. Bloch, Nuclear induction, Phys. Rev. 70, 460 (1946). Felix Bloch was in 1952 awarded the
Nobel prize in physics, together with Edward Mills Purcell, “for their development of new methods
for nuclear magnetic precision measurements and discoveries in connection therewith”.

2 R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, Geometrical representation of the Schröd-
inger equation for solving maser problems, J. Appl. Phys. 28, 49 (1957).

3 Microwave Amplification by Stimulated Emission of Radiation, a device for amplification of
microwaves, essentially working on the same principle as the laser.
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Transient build-up at exact resonance as the optical field is switched on

The case T1 � T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 2a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on,
for the exactly resonant case (δ = 0), and with the longitudinal relaxation time being much
greater than the transverse relaxation time (T1 � T2). The parameters used in the simulation are
η ≡ T1/T2 = 100, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 2b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 2a.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 3a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on, for
the exactly resonant case (δ = 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 3b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 3a.
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Transient build-up at off-resonance as the optical field is switched on

The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 4a. Evolution of the Bloch vector (u(t), v(t), w(t)) as the optical field is switched on,
for the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 4, w0 = −1, and γ(t) ≡ β(t)T2 = 3, t > 0. The medium was initially
at thermal equilibrium, (u(0), v(0), w(0)) = (0, 0, w0) = −(0, 0, 1).
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Figure 4b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 4a.
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Transient decay for a process tuned to exact resonance

The case T1 � T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 5. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the case of tuning to exact resonance (δ = 0), and with the longitudinal relaxation time being much
greater than the transverse relaxation time (T1 � T2). The parameters used in the simulation are
η ≡ T1/T2 = 100, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 0.

The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

u

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

v

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

t/T
2

w

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

 u(t) v(t)

 w
(t

)

Figure 6. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the case of tuning to exact resonance (δ = 0), and with the longitudinal relaxation time being
approximately equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the
simulation are η ≡ T1/T2 = 2, δ ≡ ∆T2 = 0, w0 = −1, and γ(t) ≡ β(t)T2 = 0.
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Transient decay for a slightly off-resonant process

The case T1 � T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 7a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being much greater than the
transverse relaxation time (T1 � T2). The parameters used in the simulation are η ≡ T1/T2 = 100,
δ ≡ ∆T2 = 2, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 5 for the exactly resonant
case.)
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Figure 7b. Same as Fig. 7a, but with δ = −2 as negative.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 8a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off,
for the off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 2, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 6 for the
exactly resonant case.)
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Figure 8b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 8a.
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Transient decay for a far off-resonant process

The case T1 � T2 – Longitudinal relaxation slower than transverse relaxation
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Figure 9a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the far off-resonant case (δ 6= 0), and with the longitudinal relaxation time being much greater
than the transverse relaxation time (T1 � T2). The parameters used in the simulation are η ≡
T1/T2 = 100, δ ≡ ∆T2 = 20, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 5 for the
exactly resonant case, and with Fig. 7a for the slightly off-resonant case.)
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Figure 9b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 9a.
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The case T1 ≈ T2 – Longitudinal relaxation approximately equal to transverse relaxation
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Figure 10a. Evolution of the Bloch vector (u(t), v(t), w(t)) after the optical field is switched off, for
the far off-resonant case (δ 6= 0), and with the longitudinal relaxation time being approximately
equal to the transverse relaxation time (T1 ≈ T2). The parameters used in the simulation are
η ≡ T1/T2 = 2, δ ≡ ∆T2 = 20, w0 = −1, and γ(t) ≡ β(t)T2 = 0. (Compare with Fig. 6 for the
exactly resonant case, and with Fig. 8a for the slightly off-resonant case.)
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Figure 10b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 10a.
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The case T1 � T2 – Longitudinal relaxation faster than transverse relaxation
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Figure 11a. Same parameter values as in Fig. 6, but with the longitudinal relaxation time being
much smaller than the transverse relaxation time (T1 � T2), η ≡ T1/T2 = 0.1. (Compare with
Figs. 9a and 10a for the cases T1 � T2 and T1 ≈ T2, respectively.)
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Figure 11b. Evolution of the magnitude of the polarization density |Pω(t)| ∼ |u(t) − iv(t)| as the
optical field is switched on, corresponding to the simulation shown in Fig. 11a.
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The connection between the Bloch equations and the susceptibility

As an example of the connection between the polarization density obtained from the Bloch equa-
tions and the one obtained from the susceptibility formalism, we will now – once again – consider
the intensity-dependent refractive of the medium.

The intensity-dependent refractive index in the susceptibility formalism

Previously in this course, the intensity-dependent refractive index has been obtained from the
optical Kerr-effect in isotropic media, in the form

n = n0 + n2|Eω|2,

where n0 = [1 + χ
(1)
xx (−ω;ω)]1/2 is the linear refractive index, and

n2 =
3

8n0
χ(3)
xxxx(−ω;ω, ω,−ω)

is the parameter of the intensity dependent contribution. However, since we by now are fully aware
that the polarization density in the description of the susceptibility formalism originally is given
as an infinity series expansion, we may expect that the general form of the intensity dependent
refractive index rather would be as a power series in the intensity,

n = n0 + n2|Eω|2 + n4|Eω|4 + n6|Eω|6 + . . .

For linearly polarized light, say along the x-axis of a Cartesian coordinate system, we know that
such a series is readily possible to derive in terms of the susceptibility formalism, with the different
order terms of the refractive index expansion given by the elements

n2 ∼ χ(3)
xxxx(−ω;ω, ω,−ω),

n4 ∼ χ(5)
xxxxxx(−ω;ω, ω,−ω, ω,−ω),

n6 ∼ χ(7)
xxxxxxxx(−ω;ω, ω,−ω, ω,−ω, ω,−ω),

...

Such an analysis would, however, be extremely cumbersome when it comes to the analysis of
higher-order effects, and the obtained sum of various order terms would also be almost impossible
to obtain a closed expression for. For future reference, to be used in the interpretation of the
polarization density given by the Bloch equations, the intensity dependent polarization density is
though shown in its explicit form below, including up to the seventh order interaction term in the
Butcher and Cotter convention,

P xω = ε0χ
(1)
xx (−ω;ω)Exω (order n = 1)

+ ε0(3/4)χ
(3)
xxxx(−ω;ω, ω,−ω)|Exω|2Exω (order n = 3)

+ ε0(5/8)χ
(5)
xxxxxx(−ω;ω, ω,−ω, ω,−ω)|Exω|4Exω (order n = 5)

+ ε0(35/64)χ
(7)
xxxxxxxx(−ω;ω, ω,−ω, ω,−ω, ω,−ω)|Exω|6Exω (order n = 7)

+ . . .

The other approach to calculation of the polarization density, as we next will outline, is to use the
steady-state solutions to the Bloch equations.
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The intensity-dependent refractive index in the Bloch-vector formalism

For steady-state interaction between light and matter, the solutions to the Bloch equations yield

u− iv =
−βw

∆ − i/T2
, [B.& C. (6.53a)],

w =
w0[1 + (∆T2)

2]

1 + (∆T2)2 + β2T1T2
, [B.& C. (6.53b)],

where, as previously, β = erαabE
α
ω(t)/~ is the Rabi frequency, though now considered to be a

slowly varying (adiabatically following) quantity, due to the assumption of steady-state behaviour.
From the steady-state solutions, the µ-component (µ = x, y, z) of the electric polarization density
P(r, t) = Re[Pω exp(−iωt)] of the medium hence is given as

Pµω = Nerµab(u− iv)

= −Nerµab
βw

∆ − i/T2

= −Nerµab
β

(∆ − i/T2)

w0[1 + (∆T2)
2]

[1 + (∆T2)2 + β2T1T2]

= −New0
rµab

(∆ − i/T2)

β[
1 + T1T2

(1+(∆T2)2)
β2

] .

(3)

In this expression for the polarization density, it might at a first glance seem as it is negative for
a positive Rabi frequency β, henc giving a polarization density that is directed anti-parallel to
the electric field. However, the quantity w0 = ρ0(b) − ρ0(a), the population inversion at thermal
equilibrium, is always negative (since we for sure do not have any population inversion at thermal
equilibrium, for which we rather expect the molecules to occupy the lower state), hence ensuring
that the off-resonant, real-valued polarization density always is directed along the direction of the
electric field of the light.

Next observation is that the polarization density no longer is expressed as a power series in
terms of the electric field, but rather as a rational function,

Pµω ∼ X/(1 +X2), (4)

where
X =

√
T1T2/(1 + (∆T2)2)β

=
√
T1T2/(1 + (∆T2)2)er

α
abE

α
ω (t)/~

is a parameter linear in the electric field. The principal shape of the rational function in Eq. (4) is
shown in Fig. 12.

From Eq. (4), the polarization density is found to increase with increasing X up to X = 1, as
we expect for an increasing power of an optical beam. However, for X > 1, we find the somewhat
surprising fact that the polarization density instead decrease with an increasing intensity; this
peculiar suggested behaviour should hence be explained before continuing.

The first observation we may do is that the linear polarizability (i. e. what we usually associate
with linear optics) follows the first order approximation p(X) = X. In the region where the
peculiar decrease of the polarization density appear, the difference between the suggested nonlinear
polarization density and the one given by the linear approximation is huge, and since we a priori
expect nonlinear contributions to be small compared to the alsways present linear ones, this is
already an indication of that we in all practical situations do not have to consider the descrease of
polarization density as shown in Fig. 12.

For optical fields of the strength that would give rise to nonlinearities exceeding the linear
terms, the underlying physics will rather belong to the field of plasma and high-energy physics,
rather than a bound-charge description of gases and solids. This implies that the validity of the
models here applied (bound charges, Hamiltonians being linear in the optical field, etc.) are limited
to a range well within X ≤ 1.
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Figure 12. The principal shape of the electric polarization density of the medium, as function of
the applied electric field of the light. In this figure, X =

√
T1T2/(1 + (∆T2)2)β is a normalized

parameter describing the field strength of the electric field of the light.

Another interesting point we may observe is a more mathematically related one. In Fig. 12, we
see that even for very high order terms (such as the approximating power series of degree 31, as
shown in the figure), all power series expansions fail before reaching X = 1. The reason for this is
that the power series that approximate the rational function X/(1 +X2),

X/(1 +X2) = X −X3 +X5 −X7 + . . . ,

is convergent only for |X| < 1; for all other values, the series is divergent. This means that no
matter how many terms we include in the power series in X, it will nevertheless fail when it comes
to the evaluation for |X| > 1. Since this power series expansion is equivalent to the expansion
of the nonlinear polarization density in terms of the electrical field of the light (keeping in mind
that X here actually is linear in the electric field and hence strictly can be considered as the field
variable), this also is an indication that at this point the whole susceptibility formalism fail to give
a proper description at this working point.

This is an excellent illustration of the downturn of the susceptibility description of interaction
between light and matter; no matter how many terms we may include in the power series of the
electrcal field, it will at some point nevertheless fail to give the total picture of the interaction, and
we must then instead seek other tools.

Returning to the polarization density given by Eq. (3), we may now express this in an explicit
form by inserting ∆ ≡ Ωba − ω for the angular frequency detuning, the Rabi frequency β =
erαabE

α
ω (t)/~, and the thermal equilibrium inversion w0 = ρ0(b)−ρ0(a). This gives the polarization

density of the medium as

Pµω = ε0
Ne2

ε0~
(ρ0(a) − ρ0(b))

rµabr
α
ab

(Ωba − ω − i/T2)︸ ︷︷ ︸
=χ

(1)
µα(−ω;ω) for a two level medium

1[
1 + T1T2

(1+(Ωba−ω)2T 2
2 )

(erγabE
γ
ω/~)2

]

︸ ︷︷ ︸
nonlinear correction factor to χ

(1)
µα(−ω;ω)

︸ ︷︷ ︸
the field corrected susceptibility, χ̄(ω;Eω) [see Butcher and Cotter, section 6.3.1]

Eαω .
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In this form, the polarization density is given as the product with a term which is identical to the
linear susceptibility4 (as obtained in the perturbation analysis in the frame of the susceptibility
formalism), and a correction factor which is a nonlinear function of the electric field.

The nonlinear correction factor, of the form 1/(1 + X2), with X =
√
T1T2/(1 + (∆T2)2)β as

previously, can now be expanded in a power series around the small-signal limit X = 0, using

1/(1 +X2) = 1 −X2 +X4 −X6 + . . . ,

from which we obtain the polarization density as a power series in the electric field (which for the
sake of simplicitly now is taken as linearly polarized along the x-axis) as

P xω ≈ ε0
Ne2

ε0~
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)
Exω

− ε0
Ne4

ε0~3
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)

(rxab)
2

[1/T 2
2 + (Ωba − ω)2](T2/T1)

|Exω|2Exω

+ ε0
Ne6

ε0~5
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)

(rxab)
4

[1/T 2
2 + (Ωba − ω)2]2(T2/T1)2

|Exω|4Exω

+ . . .

(5)

This form is identical to one as obtained in the susceptibility formalism; however, the steps that
led us to this expression for the polarization density do not rely on the perturbation theory of
the density operator, but rather on the explicit form of the steady-state solutions to the Bloch
equations.

Summary of the Bloch and susceptibility polarization densities

To summarize this last lecture on the Bloch equations, expressing the involved parameters in the
same style as previously used in the description of the susceptibility formalism, the polarization
density obtained from the steady-state solutions to the Bloch equations is

Pµω = ε0
Ne2

ε0~
(ρ0(a) − ρ0(b))

rµabr
α
ab

(Ωba − ω − i/T2)

1[
1 + T1T2

(1+(Ωba−ω)2T 2
2 )

(erαabE
α
ω/~)2

]Eαω .

By expanding this in a power series in the electrical field, one obtains the form (5), in which we
from the same description of the polarization density in the susceptibility formalism can identify

χ(1)
xx (−ω;ω) =

Ne2

ε0~
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)
,

χ(3)
xxxx(−ω;ω, ω,−ω) = − 4Ne4

3ε0~3
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)

(rxab)
2

[1/T 2
2 + (Ωba − ω)2](T2/T1)

,

χ(5)
xxxxxx(−ω;ω, ω,−ω,ω,−ω)

=
8Ne6

5ε0~5
(ρ0(a) − ρ0(b))

rxabr
x
ab

(Ωba − ω − i/T2)

(rxab)
4

[1/T 2
2 + (Ωba − ω)2]2(T2/T1)2

,

as being the first contributions to the two-level polarization density, including up to fifth order
interactions. For a summary of the non-resonant forms of the susceptibilities of two-level systems,
se Butcher and Cotter, Eqs. (6.71)–(6.73).

4 In the explicit expressions for the linear susceptibility, for example Butcher and Cotter’s
Eqs. (4.58) and (4.111) for the non-resonant and resonant cases, respectively, there are two terms,
one with Ωba − ω in the denominator and the other one with Ωba + ω. The reason why the second
form does not appear in the expression for the field corrected susceptibility, as derived from the
Bloch equations, is that we have used the rotating wave approximation in the derivation of the
final expression. (Recapitulate that in the rotating wave approximation, terms with oscillatory de-
pendence of exp[i(Ωba + ω)t] were neglected.) As a result, all temporally phase-mismatched terms
are neglected, and in particular only terms with Ωba − ω in the denominator will remain. This,
however, is a most acceptable approximation, especially when it comes to resonant interactions,
where terms with Ωba − ω in the denominator by far will dominate over non-resonant terms.
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Appendix: Notes on the numerical solution to the Bloch equations

In their original form, the Bloch equations for a two-level system are given by Eqs. (1) as

du

dt
= −∆v − u/T2,

dv

dt
= ∆u+ β(t)w − v/T2,

dw

dt
= −β(t)v − (w − w0)/T1.

By taking the time in units of the transverse relaxation time T2, as

τ = t/T2,

the Bloch equations in this normalized time scale become

du

dτ
= −∆T2v − u,

dv

dτ
= ∆T2u+ β(t)T2w − v,

dw

dτ
= −β(t)T2v − (w − w0)T2/T1.

In this system of equations, all coefficients are now normalized and physically dimensionless, ex-
pressed as relevant quotes between relaxation times and products of the Rabi frequency or detuning
frequency with the transverse relaxation time. Hence, by taking the normalized parameters

δ = ∆T2,

γ(t) = β(t)T2,

η = T1/T2,

where δ can be considered as the normalized detuning from molecular resonance of the medium,
γ(t) as the normalized Rabi frequency, and η as a parameter which describes the relative impact
of the longitudinal vs transverse relaxation times, the Bloch equations take the normalized final
form

du

dτ
= −δv − u,

dv

dτ
= δu+ γ(t)w − v,

dw

dτ
= −γ(t)v − (w − w0)/η.

This normalized form of the Bloch equations has been used throughout the generation of graphs
in Figs. 2–11 of this lecture, describing the qualitative impact of different regimes of resonance and
relaxation. The normalized Bloch equations were in the simulations shown in Figs. 2–11 integrated
by using the standard routine ODE45() in MATLAB.
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Home Assignments

The assignments are of various algebra-intense degrees, and they are not listed in any order of
level of difficulty. Solutions to the assignments by means of MapleV, Mathematica, or any other
programs for symbolic analysis is encouraged. In the assignments, any reference to “Butcher and
Cotter’s book” should be read as “P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics
(Cambridge University Press, Cambridge, 1991), ISBN 0-521-42424-0”.

The assignments give a total maximum of 44.0 marks, and successful examination is guaranteed
at fifty percent of this level, or 22.0 marks.

Solutions to the assignments should be handed in no later than April 22, 2003, to Fredrik Laurell
or Jens Tellefsen, at the department of Laser Physics and Quantum Optics, KTH, Roslagstulls-
backen 21, Albanova Universitetscentrum (Fysikcentrum), SE-106 91, Stockholm.

Questions regarding the assignments can be directed to the lecturer and examiner Fredrik Jonsson,
preferrably via email to fredrik.jonsson@proximion.com.
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Assignment 1. (Spring model for the anharmonic oscillator) As briefly discussed by Butcher
and Cotter in the first chapter of their book, the mechanical spring model can be used as a basic,
qualitative model of nonlinear interaction between light and matter, as well as providing a basis for
symmetry considerations of particular medium. The spring model can also be used for illustrating
the technique of perturbation analysis, frequently used in nonlinear optics as well as in a wide
range of different disciplines in physics.

E(t) = E(t)ex

x

xn

mn,Γn

qn = e

xe

me,Γe

qe = −e
k = k(xe − xn)

Figure 1. Setup of the one-dimensional spring model.

We here consider a spring model for the anharmonic oscillator, with the forces acting upon the
electron and nucleus (with masses me and mn, respectively) given as

Fe = −eE(t) − Γe
∂xe

∂t
− k0(xe − xn) − k1(xe − xn)2,

Fn = eE(t) − Γn
∂xn

∂t
+ k0(xe − xn) + k1(xe − xn)2,

where the first terms in the right hand sides are the electrostatic Coulomb actions on the electron
and nucleus from the externally applied electric field, the second terms phenomenologically intro-
duced damping terms, with damping constants Γe and Γn for the electron and nucleus, and where
the rest of the terms are the spring actions, modeling the mutual Coulomb interaction between the
electron and nucleus.

This assignment not only serves as to demonstrate the anharmonic oscillator, but also as to give
an exercise in perturbation analysis, a tool that later on will be used in the quantum mechanical
description of interaction between light and matter.

1a. [0.2 p] Formulate the Newtonian equations of motion for the real-valued electric dipole
moment p(t) = −e(xe(t) − xn(t)). In order to algebraically simplify the obtained expressions, it
might be helpful to introduce the centre of mass R(t) = (mexe(t) + mnxn(t))/(me + mn) and
the reduced mass mr = memn/(me + mn) of the system. In particular, show how the equation
of motion for the dipole moment decouple from the equation of motion for the centre of mass
whenever Γn/mn = Γe/me.

1b. [0.2 p] Express the real-valued electric dipole moment of the anharmonic oscillator as a
perturbation series

p(t) = p(0)(t) + p(1)(t) + p(2)(t) + . . . ,

where each term in the series is proportional to the applied electrical field strength to the power
as indicated in the superscript of repective term, and formulate the system of n+ 1 equations for
p(k)(t), for k = 0, 1, 2, . . . , n, that define the time evolution of the electric dipole.

1c. [0.2 p] Introduce a complex notation for the electric dipole moment and the applied mono-
chromatic electric field (the latter at angular frequency ω), and reformulate the equations of motion
for the complex-valued terms of the perturbation series for the electric dipole moment.

1d. [0.4 p] Solve the obtained system of differential equations for the general, non-steady state
solution for the first order perturbation term of the electric dipole moment, assuming a known
initial condition at t = 0, and p(0)(0) = 0. Hint: What will the solution for p(0)(t) be?

1e. [0.4 p] In steady state, for an ensemble of N identical and mutually noninteracting electric
dipole oscillators per unit volume, give an expression for the complex-valued linear electric suscep-

tibility χ
(1)
xx (−ω;ω). Hint: In steady state, what will the homogeneous solution for the first order

perturbation term be?
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1f. [0.2 p] In steady state, give an expression for the dispersion ∂n(ω)/∂ω.
1g. [0.4 p] In steady state, still for an ensemble of N identical and mutually noninteracting

electric dipole oscillators per unit volume, give expressions for the complex-valued second-order

electric susceptibilities χ
(2)
xxx(−2ω;ω, ω) and χ

(2)
xxx(0;ω,−ω).

1h. [0.4 p] Can the quadratic term in the expression for the spring action cause the (third-
order) optical Kerr-effect, that is to say, can it give rise to a nonzero electric dipolar susceptibility

χ
(3)
xxxx(−ω;ω, ω,−ω)?

1i. [0.3 p] Can the quadratic term in the expression for the spring action cause the (third-
order) effect of optical third harmonic generation, that is to say, can it give rise to a nonzero

electric dipolar susceptibility χ
(3)
xxxx(−3ω;ω, ω, ω)?

1j. [0.4 p] If cubic terms ±k2(xe − xn)3 were to be included in the expression for the spring
action on the electron and nucleus, respectively, would these terms be able to induce an additional
component at angular frequency 2ω?

1k. [0.3 p] If cubic terms ±k2(xe − xn)3 were to be included in the expression for the spring
action on the electron and nucleus, respectively, would these terms be able to cause optical Kerr-
effect?

Assignment 2. (Review of quantum mechanics – The density matrix) While the mechanical spring
model provides a qualitative picture that for many cases is sufficcient, it nevertheless fails to give a
proper basis for a description of interaction between light and matter down to the molecular level.
The aim with this assignment is to provide a summary of the maybe somewhat abstract (but
necessary) quantum mechanical tools that are needed for the description of interaction between
light and matter.

This assignment virtually covers all the quantum mechanics needed for understanding the basis
of the nonlinear optics described in this course, and it also demonstrates the point in nonlinear
optics at which we choose either to proceed with perturbation analysis of the matrix elements of
the density operator (introducing the nonlinear susceptibility formalism), or to solve for the matrix
elements directly by instead using the Bloch equation.

2a. [2.5 p] Starting from the time dependent Schrödinger equation for the molecular wave func-
tion, derive the equation of motion for the density matrix in the Schrödinger picture. In Butcher
and Cotters book, this corresponds to filling in the details in the discussion from Eq. (3.1) to
Eq. (3.50). (This may sound like a formidable task of deriving fifty quantum mechanical equa-
tions; however, most of these equations are simple definitions and corollaries, and by following
the outline as described in Butcher and Cotters book, this is quite a straightforward task which
hopefully will give a deeper understanding of the origin of optical nonlinearities.)

2b. [1.0 p] Starting from the equation of motion for the density matrix in the Schrödinger
picture, apply perturbation analysis and derive the general solution for the nth order term of the
density operator. In Butcher and Cotters book, this corresponds to filling in the details in the
discussion from Eq. (3.50) to Eq. (3.82).

2c. [0.4 p] In your own words, explain the difference between the “Schrödinger picture” and
“interaction picture” in quantum mechanics.

Assignment 3. (Nonlinear optics of the hydrogen atom) Among the simplest systems that are
possible to analyse analytically, the hydrogen and helium atoms serve as to give models for nonlinear
optical effects. In this assignment, the task is to essentially to perform the calculations necessary
for predicting the refractive index and optical Kerr-effect of hydrogen gas. However, in order to
simplify the task, we will instead perform the calculations for an ensemble of hydrogen atoms,
rather than for the in nature commonly appearing diatomic H2 molecules. This assumption makes
this assignment a somewhat artificial construction, which though nevertheless serve well as to
illustrate the steps leading from the atomic wavefunction (or molecular wavefunction, if we were
to consider a “real” gas of H2 molecules) to the concept of linear refractive index (given by the
first order electric susceptibility) and optical Kerr-effect.
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The wave function of the hydrogen atom is in spherical coordinates (r, ϕ, ϑ) given as [H. Haken
and H. C. Wolf, The physics of atoms and quanta, 4th ed. (Springer-Verlag, Berlin, 1993)]

ψnlm(r, ϑ, ϕ) = Rnl(r)P
m
l (cosϑ) exp(imϕ),

where n is the principal quantum number, l the angular momentum quantum number, and m the
magnetic quantum number or directional quantum number. These numbers assume the values

n = 1, 2, . . . , 0 ≤ l ≤ n− 1, −l ≤ m ≤ l.

In the angular part of the expression for the wave function,

P 0
l (ξ) = Pl(ξ) =

1

l!2l
dl

dξl
(ξ2 − 1)l

are the Legendre polynomials, and

Pml (ξ) = (1 − ξ2)m/2
dm

dξm
Pl(ξ)

are the associated Legendre functions, while for the radial part

Rnl(r) = Nnl exp(−κnr)rlL2l+1
n+1 (2κnr),

where Nnl is a normalization constant obtained from the condition

∫ ∞

0

R2
nl(r)r

2 dr = 1,

and

κn =

(
m0Ze

2

~24πε0

)
1

n
.

Above L2l+1
n+1 are the Laguerre function of the second kind, obtained from the Laguerre polynomials

through 2l + 1-fold differentiation

L2l+1
n+1 (ξ) =

d2l+1

dξ2l+1
Ln+1(ξ).

The temperature of the (artificial) hydrogen gas here condidered is 25 degrees Celcius, measured
at 1077 mBar pressure, and it is reasonable to assume that the hydrogen atoms in the ensemble
are mutually noninteracting.

3a. [1.0 p] Calculate the first order electric dipolar susceptibility χ
(1)
µα(−ω;ω) and the linear

refractive index n(ω), for a vacuum wavelength of 580 nm. Hint: Consider hydrogen being in the
ground state and identify the atomic trasition frequencies closest to the frequency range of interest.
Is it likely that resonant interaction should be taken into account?

3b. [1.0 p] Calculate the second order electric dipolar susceptibility χ
(2)
µαβ(−2ω;ω, ω), for the

same vacuum wavelength as in assignment 3a.

3c. [1.0 p] Calculate the third order electric dipolar susceptibility χ
(3)
µαβγ(−ω;ω, ω,−ω), for the

same vacuum wavelength as in assignment 3a.
3d. [0.2 p] Would you a priori (i. e. without actually performing the calculations) expect the

elements of the linear susceptibility tensor χ
(1)
µα(−ω;ω) to be lower or higher for an ensemble of

helium atoms than for the ensemble of hydrogen atoms?
3e. [0.2 p] Would you a priori expect the elements of the quadratic susceptibility tensor

χ
(2)
µαβ(−2ω;ω, ω) to be lower or higher for an ensemble of helium atoms than for the ensemble

of hydrogen atoms?
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Assignment 4. (Neumann’s principle in linear optics) Being a powerful tool in a variety of disci-
plines in physics, Neumann’s principle simply states that any type of symmetry which is exhibited
by the point symmetry group of the medium also is possessed by every physical property of the
medium.

In many textbooks in linear optics and electromagnetic wave propagation, it is taken more or
less as an axiom that the linear susceptibility tensors of cubic media are diagonal with all elements
equal, i. e. in form identical to the linear susceptibility tensor of isotropic media. However, one
rarely finds a strict derivation of this fact, and since Neumann’s principle is a powerful tool in
nonlinear optics, this assignment serves as an introduction to analysis of point symmetries of
higher order, nonlinear interactions.

4a. [0.2 p] Is an isotropic medium always centrosymmetric, that is to say, does it always possess
a center of inversion? (This question is of a general character, and applies to linear as well as
nonlinear optical regimes.)

4b. [0.2 p] Is a centrosymmetric medium always isotropic?

4c. [0.8 p] Show that the electric dipolar susceptibility tensor χ
(1)
µα(−ω;ω) takes the form

χ
(1)
xx (−ω;ω)δµα for a medium belonging to cubic point-symmetry class.

4d. [0.8 p] In addition, show that the susceptibility tensor χ
(1)
xx (−ω;ω)δµα also is isotropic,

i. e. that it in fact is left invariant under any rotation of the cordinate axes of the medium.

4e. [0.8 p] Show that the electric dipolar susceptibility tensor χ
(1)
µα = χ

(1)
µα(−ω;ω) takes the

form

χ(1)(−ω;ω) =



χ

(1)
xx 0 0

0 χ
(1)
xx 0

0 0 χ
(1)
zz




for trigonal media.

Assignment 5. (Neumann’s principle in nonlinear optics) As shown in the course, the principles
for reduction of the elements of first-order susceptibility tensors by means of direct inspection can
easily be extended and applied to susceptibilities describing nonlinear interactions as well.

While, for example, media belonging to the cubic crystallographic point symmetry group all
behave as isotropic in linear optics, they will in the nonlinear optical regime generally be of non-
isotropic character. In addition, calculations of symmetry properties of higher-order susceptibilities
tend to be less intuitive than in linear optics. However, Neumann’s principle, together with the
transformation properties of polar tensors (such as electric dipolar susceptibilities), provides a
powerful tool that is well suited for implementation in computer languages for symbolic analysis,
significantly reducing the effort needed for solving the problems.

5a. [0.4 p] Within the electric dipole approximation, the linear susceptibility tensor of isotrop-
ic media is always diagonal with all elements equal (as, hopefully, also shown in assignment 5),
hence preventing any coupling between polarization states. Is it true that no such polarization
state coupling appears in isotropic media in the nonlinear optical regime as well? Prove or give a
counterexample!

5b. [0.3 p] Prove that the elements of χ
(2n)
µα1···α2n

(−ωσ;ω1, . . . , ω2n) are all identically zero for
media possessing a center of inversion, for n being a positive integer.

5c. [0.6 p] In Fig. 2, objects possessing the point symmetry properties of crystallographic cubic
point symmetry classes 432, m3, 4̄3m, and 23 are shown [N. W. Ashcroft and N. D. Mermin, Solid
state physics (Saunders College Publishing, Orlando, 1976)].

The description of the objects is closed by the observation that the objects of these point
symmetry classes all should be left invariant under any ±120 degrees rotation around any space
diagonal axis, going through diametrically opposite corners.

Without entering any calculations, is it possible to immediately tell which of those point sym-
metry classes that will lead to an identically zero second order electric dipolar susceptibility?
Motivate with a few figures!
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2/m, 3̄ (m3) 432

4̄3m 23

Figure 2. Objects possessing the point symmetry properties of 432, m3, 4̄3m, and 23.

5d. [1.0 p] For any of the point symmetry groups 432, m3, 4̄3m, or 23 that possesses a
nonzero second order susceptibility, derive the set of nonzero and independent tensor elements

of χ
(2)
µαβ(−ωσ;ω1, ω2).
5e. [0.6 p] For a light beam propagating in the z-direction, will any of the point symmetry

groups 432, m3, 4̄3m, or 23 give a second order polarization density that is left invariant under
rotation of the medium around the z-axis? (Of course under the assumption that the optical wave
properties, such as the polarization state of the wave, are kept fixed in space under the rotation.)

5f. [0.6 p] Prove that in isotropic media

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx,

for arbitrary frequency arguments.
5g. [0.6 p] As listed in Appendix 3 of Butcher and Cotter’s book (and as also is straightforward

to verify by applying Neumann’s principle and the technique of direct inspection, as in assignment
5f above), the general third-order electric dipolar susceptibility of isotropic media, for arbitrary
frequency arguments, possesses the property

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx,

that is to say, the xxxx-element equals to the sum of the (three) distinct permutations of the
tensor elements with x in the first index, and with equal total number of x and y appearing in the
indices. As a generalization of this relation, one may hence expect the fifth-order susceptibility of
isotropic media, again for arbitrary frequency arguments, to possess the property

χ(5)
xxxxxx = χ(5)

xxxyyy + χ(5)
xxyxyy + χ(5)

xxyyxy

+ χ(5)
xxyyyx + χ(5)

xyxxyy + χ(5)
xyxyxy

+ χ(5)
xyxyyx + χ(5)

xyyxxy + χ(5)
xyyxyx + χ(5)

xyyyxx,

that is to say, suggesting that the xxxxxx-element equals to the sum of the (ten) distinct permu-
tations of the tensor elements with x in the first index, and with equal total number of x and y
appearing in the indices. The question is: Is the above statement for the fifth order susceptibility
really true?
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Assignment 6. (Review of quantum mechanics – The resonant two-level system) In assignment 2,
the analysis of the density operator is performed essentially under the assumption of nonresonant
interaction between light and matter, even though the principles of perturbation analysis apply
to weakly resonant systems as well. For strongly resonant interactions, the higher order perturba-
tion terms can no longer be considered as small compared to lower order ones, and eventually a
description in terms of the susceptibility formalism fails to give a proper picture. For such cases,
the density operator is instead described by Bloch-type equations, which when solved provide the
observable, macroscopic properties of the medium by evaluation of quantum-mechanical traces.

The outline for this technique, as in this assignment described for the two-level system, can
equally well be applied to n-level systems as well, though with an increasing algebraic complexity.

6a. [1.6 p] Starting from the time dependent Schrödinger equation for the two-level molecular
wave function, derive the Bloch equations in the rotating-wave approximation. In Butcher and
Cotters book, this corresponds to filling in the details in the discussion from Eq. (6.22) to Eq. (6.52).

6b. [0.4 p] Can the rotating wave approximation be considered as a kind of phase matching,
similar to the phase matching conditions that frequently appear elsewhere in nonlinear optics?
Motivate.

Assignment 7. (Nonlinear optics of silica) In the wavelength range from ultraviolet to mid-
infrared, the Sellmeier expression for the linear, field-independent refractive index n(λ) of pure
silica (SiO2, quartz) is given as

n2(λ) = 1 +

3∑

k=1

Akλ
2

λ2 − λ2
k

,

where λ is the vacuum wavelength of the light, and where the physically dimensionless constants
Ak are experimentally found to be

A1 = 0.6961663, A2 = 0.4079426, A3 = 0.8974794.

The resonance vacuum wavelengths in the Sellmeier expression are for silica given as

λ1 = 0.0684043µm, λ2 = 0.1162414 µm, λ3 = 9.896161 µm,

where λ1 and λ2 are electronic resonances, and λ3 a lattice vibrational resonance.

7a. [0.4 p] Using the Sellmeier expression, give an expression for the χ
(1)
αβ(−ω;ω) in terms of the

parameters Ak and λk. You may here assume the silica to be essentially isotropic. (This assumption
holds for amorphous SiO2, but it should be emphasized that this approximation in general does
not hold for quartz in a pure crystalline (trigonal) state, which belongs to the crystallographic
point symmetry class 32.)

7b. [0.2 p] In the visible range, say at vacuum wavelength 700 nm, calculate the relative con-
tribution from the vibrational term to the index of refraction.

7c. [0.6 p] Using the obtained expression for χ
(1)
αβ(−ω;ω), identify and express the magnitudes

|erαab| of the corresponding matrix elements of the electric dipole moments, in terms of the λk and
Ak parameters of the Sellmeier expression. Calculate the numerical values of |erαab| in regular SI
units. You may assume that (I) the SiO2 molecules are in the ground state, and that (II) the lattice
vibrational contribution safely can be neglected in comparison with the electronic contributions.

7d. [0.4 p] Having obtained the magnitudes of the matrix elements of the involved electric
dipole moments of quartz, apply the Unsöld approximation in order to obtain a simplified, effective
expression for the refractive index of the form

n2
eff(λ) = 1 +

Aeffλ
2

λ2 − λ2
eff

,

where the task now is to find expressions for Aeff and λeff . Also find the maximum deviation of
the obtained refractive index from the one given by the original Sellmeier expression, taken over
the vacuum wavelength interval from 400 nm to 870 nm.

7e. [0.8 p] Make use of the obtained expressions of the matrix elements of the involved electric
dipole moments of quartz to calculate an approximative value of the third-order susceptibility

χ
(3)
xxxx(−ω;ω, ω,−ω), taken over the same vacuum wavelength interval as in assignment 7d.
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Assignment 8. (The Bloch equation) Suppose a Mg26 atom is trapped and excited with a laser
beam tuned close to the 3s2 1S0–3s3p

1P1 transition (with the angular frequency of the laser light
taken as ω = ω3s3p 1P1

−ω3s2 1S0
+∆ω). Suppose the atom can be considered as a two-level system,

and that the excitation hence can be described by the Bloch equations for a two-level system. The
energy level for the 3s3p 1P1 state of Mg26 is 35051 cm−1. (See, for example, Atomic Energy Levels,
National Bureau of Standards, Circular 467.)

8a. [1.0 p] For a circular laser beam of 1 mm radius, with top-hat profile, calculate at which
optical power the Rabi angular frequency Ω equals to Ω = 1/(3τ), where τ = 2 ns is the life time
of the 3s3p 1P1 state of Mg26.

8b. [0.8 p] Calculate the probability that the atom is in the upper state for ∆ω = 0 and
∆ω = 1/τ , for steady state between the optical field and relaxation processes.

Hint: Do not start the calculations until you have made it clear in which way the assumption
of steady state simplifies the problem.

Assignment 9. (Vector model for the Bloch equation) The time dependent solution to the Bloch
equations for an optical field tuned to exact resonance, when the electromagnetic field and the
natural life time are the only broadening mechanisms, and with the initial values u(0) = v(0) = 0
and w(0) = −1, are

u(t) = 0,

v(t) =
2ΩT2

2 + (ΩT2)2

{[
cos(βt) +

1 − (ΩT2)
2

2βT2
sin(βt)

]
exp(−3t/2T2) − 1

}
,

w(t) =
(ΩT2)

2

2 + (ΩT2)2

{
1 −

[
cos(βt) +

3

2βT2
sin(βt)

]
exp(−3t/2T2)

}
− 1,

with β = [Ω2 − 1/(4T 2
2 )]1/2. Now suppose that Mg26 is contained in a cell at 200 degrees Celsius.

Choose ∆ω = 0 and an optical intensity such that ΩT2 = 5.
9a. [0.7 p] As the optical field is switched on, the atoms of the Mg26 sample are excited to the

upper level. As the Bloch vector rotates, the population in the upper state will at some time T0

start to decrease again. Calculate the time T0 and the population density ρ22(T0) at this time.
9b. [1.0 p] Calculate the length of the cell in order for the incindent optical intensity to decrease

by 10 percent at t = T0. The energy emitted by spontaneous emission is here neglected for
simplicity, as in 9c.

9c. [0.7 p] Calculate ρ22(2T0) and the relative amount of the incident light energy that has
been absorbed at t = 2T0. If the system had been undamped, how much of the light would then
have been absorbed after the Bloch vector had rotated one turn?

9d. [1.0 p] Draw approximately how the Bloch vector evolve, from the time at which the light
is switched on until steady state is reached, and how it then evolves as the light is switched off
again.
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Assignment 10. (Optical bistability) As a medium possessing optical Kerr-effect is placed inside
a cavity, either in a ring cavity (in which only unidirectional wave propagation is considered) or in
a Fabry-Pérot cavity (in which counter-propagating waves may couple as well), one introduces an
optical feedback to the nonlinear interaction between light and matter. For certain configurations
this feedback leads to phenomena where the system is latched into stable states, in particular
with the transmitted intensity taking two possible stable values for a given input, so-called optical
bistability, where the two states of the system can be pictured as “low” (switched off) and “high”
(switched on).

optical Kerr medium

L

|ρb|2 = 1 |ρb|2 = 1

ρa ρaEI
ω ET

ω

Figure 3. Setup of the ring cavity for optical bistability.

optical Kerr medium

L

ρa ρa

EI
ω ET

ω

Figure 4. Setup of the Fabry-Pérot cavity for optical bistability.

10a. [1.0 p] For the ring cavity configuration, using an all-dispersive isotropic optical Kerr-
medium, formulate the equation that relates the transmitted intensity IT = (ε0c/2)|ET

ω |2 to the
incident intensity II = (ε0c/2)|EI

ω|2. In the ring cavity configuration, the two semitransparent
mirrors are assumed to have a complex amplitude reflectance of ρa each, while the rest of the
mirrors have a reflectance of unity. For simplicity, you may neglect the reflectance of the optical
beam at the end surfaces of the nonlinear medium, hence neglecting any back-reflected wave in the
ring cavity. You may also assume the light to be linearly polarized (TE or TM with respect to the
plane of incidence on the mirrors), enabling a scalar theory of wave propagation to be applicable
to the problem.

10b. [1.0 p] Same as 10a, but now for the Fabry-Pérot cavity configuration, where the nonlinear
medium is enclosed by two mirrors of complex amplitude reflectance ρa.

10c. [0.4 p] For the ring cavity or the Fabry-Pérot cavity configuration (your choice), explain
how the obtained relations between transmitted and incindent intensities lead to optical bistability.

10d. [0.4 p] In purely dispersive optical bistability, for which there is no absorption, what
happens to the light energy contained in the cavity as the system switches from the upper to the
lower state of transmission?

158



Nonlinear Optics 5A5513 (2003)

Instead of solving the above problems, you may solve one of the following two additional problems
on optical bistability:

10′. [2.8 p] Formulate the equation for absorptive optical bistability with an inhomogeneously
broadened isotropic two-level medium. Prove that this equation can (or cannot) exhibit optical
bistability.

10′′. [2.8 p] Compare and contrast absorptive and dispersive optical bistability for isotropic
media. How are the incident and transmitted field phases related for each case?

Assignment 11. (Optical solitons) As shown in the course, optical solitons are solutions to the
wave equation in optical Kerr-media, where the intensity-dependent refractive index of the medium
balance the dispersion.

11a. [1.0 p] Prove that for an initial pulse shape given by u(0, s) = N sech(s), with N = 1 for
the fundamental soliton, an exact soliton solution u(ζ, s) to the nonlinear Schrödinger equation is
given by

u(ζ, s) = sech(s) exp(iζ/2).

11b. [0.4 p] For quartz, the numerical value of the xyyx element of the nonlinear susceptibility
is given as

χ(3)
xyyx(−ω;ω, ω,−ω) = 8.0 × 10−23 m2/V2,

at a vacuum wavelength of 1 694 nm. Calculate the numerical values of χ
(3)
xxxx(−ω;ω, ω,−ω) and

the nonlinear refractive index n2 at this vacuum wavelength. Hint: Consider Kleinman symmetry
to hold.

11c. [0.6 p] Suggest pulse duration time and peak intensity of an optical pulse at 1 694 nm
vacuum wavelength in order to form a fundamental soliton in quartz. Hint: The linear optical
properties of quartz at this wavelength may, for example, be obtained from the Sellmeier expression
given in assignment 7.

Assignment 12. (Third harmonic generation in isotropic media) In this assignment, the task is
to formulate the theory of third harmonic generation, in similar to the second harmonic generation
analyzed in the lectures. While second harmonic generation requires the medium to be non-
centrosymmetric (if the medium is centrosymmetric, the second order susceptibility is zero, as
shown in the lectures), the third harmonic generation does not have this constraint. In particular,
we will in this assignment consider the third harmonic generation in isotropic media.

Note that even though this problem concerns isotropic media, the third harmonic signal is
highly dependent on the polarization state of the pump wave. As an example, circularly polarized
light cannot be used for third harmonic generation in isotropic media. (This is, for example, shown
in section 5.3.4, page 144, of Butcher and Cotter’s The Elements of Nonlinear Optics.)

This assignment serves as an illustration of a general scheme for solving wave propagation
problems in nonlinear optics, as well as an example of the application of the Butcher and Cotter
convention of degeneracy factors in nonlinear optics. When solving this assignment, you may
benefit from applying the scheme for solving problems in nonlinear optics, as outlined in lecture
nine of this course.

12a. [1.0 p] In the infinite plane wave limit, assuming all fields to be polarized in the xy-plane
and propagating in the positive z-direction, formulate the polarization density of the isotropic
medium, at the angular frequency ω of the fundamental (pump) wave.

12b. [1.0 p] Using the same assumptions as in 12a, formulate the polarization density at the
angular frequency 3ω of the third harmonic wave.

12c. [1.0 p] For a continuous-wave configuration, with the pump wave being linearly polarized
in the x-direction, formulate the coupled system of wave equations for the pump and third harmonic
wave. What will the polarization state of the third harmonic wave be?

12d. [1.0 p] Assuming the conversion efficiency from the pump to the third harmonic wave
to be small, we may assume the pump wave to be essentially non-depleted, i. e. Aω(z) ≈ const.
(non-depleted pump approximation). For this case, derive an expression for the intensity of the
third harmonic wave after a geometrical propagation distance L. (As a hint of the form of this
expression, you may consult Butcher and Cotter, Eq. (7.30).)
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Assignment 13. (The degeneracy factor) The system of including degenerate terms of the polar-
ization density by means of the degeneracy factor K(−ωσ;ω1, . . . , ωn) is very convenient, since it,
for example, allow us to use only one of the possible combinations of (ω1, . . . , ωn) for the description
of some particular nonlinear interaction, instead of considering all possible permutations. How-
ever, the convention of taking the real-valued electrical field as E(r, t) = Re[Eω exp(−iωt)] is not
universal, and in the 1960’s, the convention was rather to take it as E(r, t) = Eω exp(−iωt) + c. c.,
i. e. as twice of the convention of Butcher and Cotter. Sometimes it is though useful to apply the
“old” convention, especially if it comes to the interpretation of pioneering publications in the field
of nonlinear optics.

13a. [3.0 p] Reformulate the degeneracy factor given by Butcher and Cotter, Eq. (2.56), for
the case where the real-valued field instead is taken as E(r, t) = Eω exp(−iωt) + c. c..

13b. [1.0 p] Why would one suspect that a misinterpretation of the convention of the real-
valued field has a greater impact in nonlinear optics rather than in linear optics?
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Assignment 14. (Electro-optic phase modulation – The Pockels effect) In this assignment, we
consider an electro-optic light modulator, consisting of a nonlinear optical crystal of litium niobate,
LiNbO3, with electrodes plated on the top and bottom surfaces, as shown in Fig. 5. As a DC voltage
is applied to the electrodes, the refractive index experienced by the light is changed through the
linear electro-optical Pockels effect, described by the second-order susceptibility

χ
(2)
µαβ(−ω;ω, 0),

and the resulting phase shift of the light over the crystal can be used in an interferometric setup,
for modulation of light intensity.

y

x

z Crystal frame (x, y, z)

LiNbO3

(point symmetry group 3m)

EI(r, t) = Re[Eω exp(−iωt)]
= ezRe[Ezω exp(−iωt)]

+

Figure 5. The phase shifting element of the litium niobate electro-optic modulator.

As one example of an interferometric setup in which the phase shift of the light may be detected
as a modulation of intensity is the Mach-Zender configuration, as shown in Fig. 6, where the input
light waveguide is split into two, with each waveguide now carrying half of the input intensity.
A phase shifting electro-optical element is placed in one of the arms of the interferometer (the
lower one as shown in Fig. 6), and by modulating the the applied voltage over it, a relative phase
shift between the light in the two arms is obtained. As the two guided light waves are combined
again, the resulting output will experience either constructive interference (if the relative phase
shift between the beams is a multiple of 2π), or destructive interference (if the phase shift instead
is π plus a multiple of 2π).

Figure 6. The Mach-Zender configuration of an integrated electro-optic modulator.

The task is now to formulate the theory of the basic electro-optic element shown in Fig. 5.
14a. [1.0 p] Assuming the applied voltage over the crystal to generate a homogeneous DC

electrical field EzDC in the z-direction, and also assuming the optical field to be linearly polarized
along the z-direction, propagating in the positive x-direction, formulate the polarization density
at angular frequency ω of the medium.

14b. [1.0 p] For a continuous-wave optical field, formulate the wave equation for the wave
propagation through the medium.

14c. [1.0 p] Solve the wave equation for the envelope of the electrical field. To solve the wave
equation, it might be helpful to apply the slowly-varying envelope approximation.

14d. [1.0 p] Formulate the refractive index change of the medium due to the Pockels effect, as
function of the applied DC electrical field EzDC.
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