Nanophotonics with the Scanning Electron Microscope

Fredrik Jonsson, Andrey Denisyuk, Bruno Soares, Max Bashevoy, Zsolt Samson, Kevin MacDonald, Nikolay Zheludev

EPSRC Nanophotonics Portfolio Centre
Optoelectronics Research Centre
University of Southampton
Outline

• Phase change memory functionality

• Growth of nanoparticles for phase-change memory functionality

• Optical read-out of phase-change memory

• Single nanoparticle phase-change memory

• Electron beam readout of phase-change memory states

• Conclusions
Basic building blocks for plasmonic circuitry

- **Plasmonic source**
- **Means for transport (waveguide)**
- **Switching element (phase-changing nanoparticle)**
- **Decoupling into optical radiation**

Control channel for switching and read-out of state

SEM: Plasmonics and plasmonic imaging by free-electron injection

Optical state switching of a single nano-particle (optical phase-change memory/switch)
In general: Why phase-change memories?

- *Flash memory expected to encounter significant scaling limitations in the near future* - IBM Research (December 2006)
- Writing data into a flash memory is 1000 times slower than DRAM or SRAM
- Extremely difficult to keep current cell design of flash non-volatile as Moore's Law shrinks its minimum feature sizes below 45 nm

Hard disk technology, 500 GB (2006, Hitachi), 0.1 Tb/in²
Bit cell: ~80 nm

Flash technology, 32 GB (2006, Samsung)
40 nm process

HD DVD, 15GB/layer (2006), 0.009 Tb/in²
Bit cell: ~280 nm

Blu-ray Disc, 25GB/layer (2006) 0.015 Tb/in²
Bit cell: ~220 nm

Phase-change memory element
(December 2006, IBM Research)
Bit cell: ~20 nm
Phase-change memory functionality

Electronic

- Transition between crystalline and amorphous phases
- Changing resistivity of medium

Optical

- Nanoparticles of phase-change media
- Crystalline-amorphous or crystalline-crystalline transition
- Changing optical cross-section
- Switching energy as low as 400 fJ

The crystalline phases of gallium

Different phases possess different optical properties

[defrain, j. chimie phys. 74, 851 (1977)]
Growth of nanoparticles for phase-change memory functionality

- Sputtering of gallium nanoparticles onto the end face of an optical fiber
- Light-assisted growth performed in situ of a scanning electron microscope
Growth of a single nanoparticle

- 80 nm gallium nanoparticle grown at the 30 nm aperture of a scanning-nearfield optical microscopy (SNOM) probe
- Pump-probe setup for reading optical cross-section (reflectivity)
Pump-probe detection of optical cross-section

CW 1310 nm probe

1550 nm pump
~30 nW

Reflected probe

Modulated
1550 nm pump
f ~ 1.9 kHz

Optical Excitation

Reversible phase transitions

EPSRC NanoPhotonics Portfolio Centre / Optoelectronics Research Centre, University of Southampton
www.nanophotonics.org.uk
Light-induced phase transitions in a single nanoparticle

- Control power at aperture ~30 nW
- Detection of nanoparticle’s optical sensitivity to supplied thermal energy

[Soares et al., Nano Lett. 5, 2104 (2005)]
Memory functionality of a single nanoparticle

- Switching of state achieved by single optical pulses of 1.5 and 4.8 pJ (in fiber)
- Switching energies of 150 and 480 fJ
- Optical pump-probe readout of cross-section of nanoparticle
- Four-level (quaternary-logic) memory
Optimisation of light-assisted nanoparticle growth

<table>
<thead>
<tr>
<th>Average power</th>
<th>0.1 mW</th>
<th>0.2 mW</th>
<th>0.4 mW</th>
<th>0.8 mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median size</td>
<td>70 nm</td>
<td>50 nm</td>
<td>45 nm</td>
<td>60 nm</td>
</tr>
</tbody>
</table>

Ga atoms

silica
Electron beam-readout of phase

- Cathodoluminescence readout of phase of nanoparticles
- Difference of 10% in emission detected at 520 nm
- Technique not limited by optical diffraction
- Low energy deposition leaves memory state intact
Future outlook: The scanning electron microscope as a plasmon source

- The SEM as a tool for analysis of plasmonic structures
- The injected electron beam as a highly confined source of plasmons

 [Bashevoy et al., Nano Letters 6, 1113-1115 (2006)]

Recent developments on plasmonic imaging is reported tomorrow, talk THU2o.1
Conclusions

- The scanning electron microscope as an optical workbench for nanophotonics
- First demonstration of a quaternary optical phase-change memory element in a single gallium nanoparticle
- Optimization of light-assisted growth of nanoparticles, to reach below 45 nm size
- Cathodoluminescence readout of optically written state
- The scanning electron microscope as a highly localised plasmonic source

References
Non-volatile data storage – a brief overview

Optical binary phase-change media
- 25GB/layer (2006) 0.015 Tbit/in²
 - Bit cell: ~220 nm
- 4.7 GB/layer (1996)
 - Bit cell: ~510 nm
- CD 650 MB (1983)
 - Bit cell: ~1.4 µm
- 15GB/layer (2006), 0.009 Tbit/in²
 - Bit cell: ~280 nm

Electronic binary phase-change media
- Examples:
 - Doped SbTe (1)
 - Ge₂Sb₂Te₅ (2)

Electronic magnetick hard disk technology
- 0.34 Tbit/in² (Sep 2006, Hitachi Research)
 - Bit cell: ~45 nm

Magnetic hard disk technology
- 5 MB (1957, IBM Ramac)
 - Bit cell: ~600 µm
- 50 24” discs, 1.7 Kb/in²

Electronic storage, USB memories
- Flash, 128 KB (1988, Toshiba)
 - Flash, 32 GB (2006, Samsung)
 - 40 nm process

Audio, Mobile storage, USB memories
- Cameras, iPods, ...

Isolated nanoparticles for optical phase change memory functionality and optical or plasmonic switches
- Bit cell: ~45 nm
