Nanophotonics with the Scanning Electron Microscope

<u>Fredrik Jonsson</u>, Andrey Denisyuk, Bruno Soares, Max Bashevoy, Zsolt Samson, Kevin MacDonald, Nikolay Zheludev

EPSRC Nanophotonics Portfolio Centre
Optoelectronics Research Centre
University of Southampton

Outline

- Phase change memory functionality
- Growth of nanoparticles for phase-change memory functionality
- Optical read-out of phase-change memory
- Single nanoparticle phase-change memory
- Electron beam readout of phase-change memory states
- Conclusions

Basic building blocks for plasmonic circuitry

In general: Why phase-change memories?

- Flash memory expected to encounter significant scaling limitations in the near future IBM Research (December 2006)
- Writing data into a flash memory is 1000 times slower than DRAM or SRAM
- Extremely difficult to keep current cell design of flash non-volatile as Moore's Law shrinks its minimum feature sizes below 45 nm

Hard disk technology, 500 GB (2006, Hitachi), 0.1 Tb/in²

Bit cell: ~80 nm

Flash technology, 32 GB (2006, Samsung)

40 nm process

Phase-change memory element (December 2006, IBM Research)

Bit cell: ~20 nm

Phase-change memory functionality

Electronic

- Transition between crystalline and amorphous phases
- Changing resistivity of medium

Lankhorst *et al.*, Nature Matrials **4**, 347 (2005)

- Nanoparticles of phase-change media
- Crystalline-amorphous or crystallinecrystalline transition
- Changing optical cross-section
- Switching energy as low as 400 fJ

The crystalline phases of gallium

Different phases possess different optical properties

Crystalline parameters at absolute vacuum

Phase	Structure	T _m	Lattice parameters
α (stable)	Orthorhombic	29.78°C / 302.92K	a = 4.5186 b = 7.6570 c = 4.5258 (at $T = T_{m}$)
β (metastable)	Monoclinic	-16.3°C / 256.85 K	a = 2.7713 b = 8.0606 c = 3.3314 $\beta = 91.574^{\circ}$
δ (metastable)	Rhombic	-19.4°C / 253.8 K	a = 7.729 $\alpha = 72.02^{\circ}$
ε (metastable)	unknown	-28.6°C / 244.6 K	unknown
γ (metastable)	Orthorhombic	-35.6°C / 237.6 K	a = 10.593 b = 13.523 c = 5.203 (at $T=T_{\rm m}$)

[A. Defrain, J. Chimie Phys. **74**, 851 (1977)]

Growth of nanoparticles for phase-change memory functionality

- Sputtering of gallium nanoparticles onto the end face of an optical fiber
- Light-assisted growth performed in situ of a scanning electron microscope

Growth of a single nanoparticle

Pump-probe detection of optical cross-section

EPSRC NanoPhotonics Portfolio Centre / Optoelectronics Research Centre, University of Southampton www.nanophotonics.org.uk

Light-induced phase transitions in a single nanoparticle

Temperature, K

[Soares et al., Nano Lett. 5, 2104 (2005)]

- Control power at aperture ~30 nW
- Detection of nanoparticle's optical sensitivity to supplied thermal energy

Memory functionality of a single nanoparticle

- Switching of state achieved by single optical pulses of 1.5 and 4.8 pJ (in fiber)
- Switching energies of 150 and 480 fJ
- Optical pump-probe readout of crosssection of nanoparticle
- Four-level (quaternary-logic) memory

Optimisation of light-assisted nanoparticle growth

Average power	0.1 mW	0.2 mW	0.4 mW	0.8 mW
Median size	70 nm	50 nm	45 nm	60 nm

Electron beam-readout of phase

- Cathodoluminescence readout of phase of nanoparticles
- Difference of 10% in emission detected at 520 nm
- Technique not limited by optical diffraction
- Low energy deposition leaves memory state intact

Future outlook: The scanning electron microscope as a plasmon source

- The SEM as a tool for analysis of plasmonic structures
- The injected electron beam as a highly confined source of plasmons

[Bashevoy *et al.*, Nano Letters **6**, 1113-1115 (2006)]

Recent developments on plasmonic imaging is reported tomorrow, talk THU20.1

Conclusions

- The scanning electron microscope as an optical workbench for nanophotonics
- First demonstration of a quaternary optical phase-change memory element in a single gallium nanoparticle
- Optimization of light-assisted growth of nanoparticles, to reach below 45 nm size
- Cathodoluminescence readout of optically written state
- The scanning electron microscope as a highly localised plasmonic source

References

- [1] M.V. Bashevoy *et al.*, Nano Lett. **6**, 1113 (2006).
- [2] B.F. Soares *et al.*, Optics Express **14**, 10652 (2006).
- [3] B.F. Soares *et al.*, Nano Lett. **5**, 2104 (2005).
- [4] S. Pochon *et al.*, Phys. Rev. Lett. **92**, 145702 (2004).

Non-volatile data storage – a brief overview

